
Javier Guillot Jiménez

Strategies to Understand the Connectivity of
Entity Pairs in Knowledge Bases

Tese de Doutorado

Thesis presented to the Programa de Pós-graduação em Infor-
mática of PUC-Rio in partial fulfillment of the requirements for
the degree of Doutor em Ciências – Informática.

Advisor: Prof. Marco Antonio Casanova

Rio de Janeiro
September 2021

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Javier Guillot Jiménez

Strategies to Understand the Connectivity of
Entity Pairs in Knowledge Bases

Thesis presented to the Programa de Pós-graduação em Infor-
mática of PUC-Rio in partial fulfillment of the requirements for
the degree of Doutor em Ciências – Informática. Approved by the
Examination Committee:

Prof. Marco Antonio Casanova
Advisor

Departamento de Informática – PUC-Rio

Prof. Antonio Luz Furtado
Departamento de Informática – PUC-Rio

Profa. Melissa Lemos Cavaliére
Instituto Tecgraf – PUC-Rio

Prof. Luiz André Portes Paes Leme
UFF

Profa. Giseli Rabello Lopes
UFRJ

Rio de Janeiro, September 17th, 2021

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

All rights reserved.

Javier Guillot Jiménez
Javier Guillot Jiménez holds a master in computer science
degree and a bachelor in computer science degree both from
the University of Havana (UH). Javier worked as an assistant
professor for eight years at the Faculty of Mathematics and
Computer Science of UH. He also worked as a system analyst
at the Department of Informatics of the University of Arts
(ISA) in Cuba, and the Central Coordination for Planning
and Evaluation (CCPA) of the Pontifical Catholic University
of Rio de Janeiro (PUC-Rio). His main research topic areas
include Semantic Web, Information Retrieval and Linked
Data.

Bibliographic data
Guillot Jiménez, Javier

Strategies to Understand the Connectivity of Entity Pairs
in Knowledge Bases / Javier Guillot Jiménez; advisor: Marco
Antonio Casanova. – 2021.

94 f: il. color. ; 30 cm

Tese (doutorado) - Pontifícia Universidade Católica do Rio
de Janeiro, Departamento de Informática, 2021.

Inclui bibliografia

1. Informática – Teses. 2. Relacionamento de entidades.
3. Medida de similaridade. 4. Ranqueamento de caminhos
de relacionamento. 5. Base de Conhecimento. I. Casanova,
Marco Antonio. II. Pontifícia Universidade Católica do Rio de
Janeiro. Departamento de Informática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

To my family,
for their support and encouragement.

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Acknowledgments

First I would like to thank my advisor Prof. Marco Antonio Casanova for his
guidance and his full support to carry out this work. I was very lucky to arrive
in a new country to face a great professional challenge and to be welcomed by
an excellent professor and researcher and a wonderful person like him.

I would also like to thank Prof. Antonio Luz Furtado, Prof. Luiz André Portes
Paes Leme, Yenier Torres Izquierdo, Angelo Batista Neves, and Prof. Giseli
Rabello Lopes for their collaboration and for helping me finish this research
and publish part of the results.

I would also like to thank all my professors and colleagues from the Faculty
of Mathematics and Computer Science of the University of Havana for all the
years of learning and experiences as a student and professor, especially dear
Prof. Lucina García, Martha Montes de Oca, Carmen Fernández, and Rafael
Oliva.

I would like to especially thank my wife Ive who has patiently accompanied
me on this long and hard journey from which we leave feeling more in love
than ever.

I would also like to thank my family for all the support that they give me
from the distance. My parents cannot imagine how much impact a few words
in a simple text or audio message have on me. Thank you for the love and for
always trusting my decisions and ways of facing life. Thanks to my little sister
Haydée for being my driving force and getting me out of my comfort zone,
thanks for having shared with me the first years of this adventure. Thank you
all for everything.

This study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, by the
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) -
CNPq/146411/2018-8, and by the PUC-Rio. Thank you for the aids granted,
without which this work does not could have been accomplished.

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Abstract

Guillot Jiménez, Javier; Casanova, Marco Antonio (Advisor). Strategies
to Understand the Connectivity of Entity Pairs in Knowledge
Bases. Rio de Janeiro, 2021. 94p. Tese de Doutorado – Departamento
de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

The entity relatedness problem refers to the question of exploring a
knowledge base, represented as an RDF graph, to discover and understand how
two entities are connected. This question can be addressed by implementing a
path search strategy that combines an entity similarity measure with an entity
degree limit and an expansion limit to reduce the path search space and a path
ranking measure to order the relevant paths between a given pair of entities in
the RDF graph. This thesis first introduces a framework, called CoEPinKB,
together with an implementation, to experiment with path search strategies.
The framework features as hot spots the entity similarity measure, the entity
degree limit, the expansion limit, the path ranking measure, and the knowledge
base. The thesis moves on to present a performance evaluation of nine path
search strategies using a benchmark from two entertainment domains over
the OpenLink Virtuoso SPARQL protocol endpoint of the DBpedia. The
thesis then introduces DCoEPinKB, a distributed version of the framework
based on Apache Spark, that supports the empirical evaluation of path
search strategies, and presents an evaluation of six path search strategies
over two entertainment domains over real-data collected from DBpedia. The
results provide insights about the performance of the path search strategies
and suggest that the framework implementation, instantiated with the best
performing pair of measures, can be used, for example, to expand the results
of search engines over knowledge bases to include related entities.

Keywords
Entity Relatedness; Similarity Measure; Relationship Path Ranking;

Backward Search; Knowledge Base.

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Resumo

Guillot Jiménez, Javier; Casanova, Marco Antonio. Estratégias para
entender a conectividade de pares de entidades em bases de
conhecimento. Rio de Janeiro, 2021. 94p. Tese de Doutorado – De-
partamento de Informática, Pontifícia Universidade Católica do Rio de
Janeiro.

O problema do relacionamento de entidades refere-se à questão de
explorar uma base de conhecimento, representada como um grafo RDF, para
descobrir e entender como duas entidades estão conectadas. Esta questão pode
ser resolvida implementando-se uma estratégia de busca de caminhos que
combina uma medida de similaridade de entidades, um limite para o grau das
entidades, e um limite de expansão para reduzir o espaço de busca de caminhos,
e uma medida de ranqueamento de caminhos para ordenar os caminhos
relevantes entre um determinado par de entidades no grafo RDF. Esta tese
inicialmente apresenta um framework, chamado CoEPinKB, juntamente com
uma implementação, para experimentar estratégias de busca de caminhos. O
framework apresenta como pontos de flexibilização a medida de similaridade
entre entidades, o limite máximo do grau das entidades, o limite de expansão,
a medida de classificação de caminhos, e a base de conhecimento. Em seguida,
a tese apresenta uma avaliação de desempenho de nove estratégias de busca de
caminhos usando um benchmark envolvendo dois domínios de entretenimento
sobre o OpenLink Virtuoso SPARQL protocol endpoint da DBpedia. Por fim, a
tese apresenta o DCoEPinKB, uma versão distribuída do framework baseado
em Apache Spark, que suporta a avaliação empírica de estratégias de busca de
caminhos, e apresenta uma avaliação de seis estratégias de busca de caminhos
em dois domínios de entretenimento sobre dados reais coletados da DBpedia.
Os resultados fornecem intuições sobre o desempenho das estratégias de busca
de caminhos e sugerem que a implementação do framework, instanciado com
o par de medidas de melhor desempenho, pode ser usado, por exemplo, para
expandir os resultados dos motores de busca em bases de conhecimento para
incluir entidades relacionadas.

Palavras-chave
Relacionamento de entidades; Medida de similaridade; Ranqueamento

de caminhos de relacionamento; Base de Conhecimento.

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Table of contents

1 Introduction 17
1.1 Context and Motivation 17
1.2 Goal and Contributions 19
1.3 Structure of the Thesis 20

2 Background 21
2.1 RDF 21
2.2 Similarity Measures 25
2.2.1 Overview 25
2.2.2 Jaccard Index 26
2.2.3 Wikipedia Link-based Measure 26
2.2.4 SimRank 27
2.3 Relationship Path Ranking Measures 27
2.3.1 Overview 27
2.3.2 Predicate Frequency Inverse Triple Frequency 28
2.3.3 Exclusivity-based Relatedness 29
2.3.4 Pointwise Mutual Information 29
2.4 Measuring Ranking Accuracy 30

3 Related Work 32
3.1 Entity Relationship Discovery and Ranking in Knowledge Bases 32
3.2 Similarity-based operations on Distributed Query Processing Systems 35
3.3 Processing Large RDF Datasets in Distributed Environments 36

4 Discovering Relevant Paths between Entity Pairs 39
4.1 The Entity Relatedness Problem 39
4.1.1 Formalization of Problem 39
4.1.2 Overview of the Proposed Solution 39
4.2 The CoEPinKB Approach to the Entity Relatedness Problem 43
4.2.1 Finding Relationship Paths between Entities in a Knowledge Graph 43
4.2.2 Ranking Relationship Paths in a Knowledge Graph 47
4.3 The DCoEPinKB Approach to the Entity Relatedness Problem 47
4.4 Chapter Conclusions 49

5 Implementation 51
5.1 Overview 51
5.2 The CoEPinKB Framework 52
5.2.1 Architecture 53
5.2.2 User Interface 57
5.3 The DCoEPinKB Framework 58
5.3.1 Architecture 58
5.3.2 User Interface 61
5.4 Chapter Conclusions 61

6 Evaluation 63

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

6.1 CoEPinKB Evaluation 63
6.1.1 Experimental Setup 63
6.1.2 Experiment 1 – Performance Evaluation 66
6.2 DCoEPinKB Evaluation 69
6.2.1 Experimental Setup 69
6.2.2 Experiment 2 – Performance Evaluation 74
6.2.3 Experiment 3 – Ranking Accuracy 75
6.3 Comparison of CoEPinKB and DCoEPinKB 78
6.4 Chapter Conclusions 79

7 Conclusions and Future Work 81
7.1 Conclusions 81
7.2 Future Work 82

8 Bibliography 83

A Additional Results of the Experiments with DCoEPinKB 90

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

List of figures

Figure 4.1 Backward search execution example 41
(a) Fragment of the RDF graph 41
(b) Expanding a (iteration 1) 41
(c) Expanding b (2) 41
(d) Expanding the neighbors of a (3) 41
(e) Expanding the neighbors of b (4) 41
(f) Relationship paths found 41

Figure 5.1 General Architecture 52
Figure 5.2 CoEPinKB Architecture & Workflow 53
Figure 5.3 Fork/Join Example 56
Figure 5.4 CoEPinKB User Interface 58
Figure 5.5 DCoEPinKB Architecture 59

Figure 6.1 Average time of path search strategies using CoEPinKB 66
Figure 6.2 Average execution times of path search strategies using
CoEPinKB in each domain (excluding S&I, S&E and S&P strategies) 67
Figure 6.3 Number of paths found for each entity pair using Jaccard
index and WLM as entity similarity measures 68
Figure 6.4 Average execution time over all entity pairs in each domain
and dataset for the J&E strategy varying the expansion limit 74
Figure 6.5 Number of paths found over all entity pairs in each domain
and dataset for the J&E strategy varying the expansion limit 75
Figure 6.6 Average nDCG@k over the movies and music domains for the
J&E strategy varying the expansion limit 76

(a) Movies domain in DBpedia21M 76
(b) Movies domain in DBpedia45M 76
(c) Music domain in DBpedia21M 76
(d) Music domain in DBpedia45M 76

Figure 6.7 Average nDCG@k over the movies and music domains for the
J&I strategy varying the expansion limit 77

(a) Movies domain in DBpedia21M 77
(b) Movies domain in DBpedia45M 77
(c) Music domain in DBpedia21M 77
(d) Music domain in DBpedia45M 77

Figure 6.8 Average paths found for each domain using CoEPinKB and
DCoEPinKB 78
Figure 6.9 Average time of path search strategies using CoEPinKB
and DCoEPinKB in the movies and music domains 79

(a) Movies domain 79
(b) Music domain 79

Figure A.1 Average execution time over all entity pairs in each domain
and dataset for different strategies varying the expansion limit 90

(a) J&I strategy 90

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

(b) J&P strategy 90
(c) W&I strategy 90
(d) W&E strategy 90
(e) W&P strategy 90

Figure A.2 Average nDCG@k over the movies and music domains for the
J&P strategy varying the expansion limit 91

(a) Movies domain in DBpedia21M 91
(b) Movies domain in DBpedia45M 91
(c) Music domain in DBpedia21M 91
(d) Music domain in DBpedia45M 91

Figure A.3 Average nDCG@k over the movies and music domains for the
W&I strategy varying the expansion limit 92

(a) Movies domain in DBpedia21M 92
(b) Movies domain in DBpedia45M 92
(c) Music domain in DBpedia21M 92
(d) Music domain in DBpedia45M 92

Figure A.4 Average nDCG@k over the movies and music domains for the
W&E strategy varying the expansion limit 93

(a) Movies domain in DBpedia21M 93
(b) Movies domain in DBpedia45M 93
(c) Music domain in DBpedia21M 93
(d) Music domain in DBpedia45M 93

Figure A.5 Average nDCG@k over the movies and music domains for the
W&P strategy varying the expansion limit 94

(a) Movies domain in DBpedia21M 94
(b) Movies domain in DBpedia45M 94
(c) Music domain in DBpedia21M 94
(d) Music domain in DBpedia45M 94

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

List of tables

Table 2.1 Example of a Statement Table representation 23
Table 2.2 Example of a Clustered Property Table representation 24
Table 2.3 Example of a Property-Class Table representation 24
Table 2.4 Example of a Vertical Partitioning representation 25

Table 4.1 Path Search Strategies 43

Table 5.1 Comparison of the proposed frameworks with related systems 62

Table 6.1 Entity pairs selected for experimenting with CoEPinKB 64
Table 6.2 Datasets for experimenting with DCoEPinKB 70
Table 6.3 Entity pairs selected for experimenting with DCoEPinKB 71
Table 6.4 Path Search Strategies evaluated using DCoEPinKB 72

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

List of algorithms

Algorithm 1 backwardSearch 44
Algorithm 2 expansion 45
Algorithm 3 join 46
Algorithm 4 getRelevantPaths 47
Algorithm 5 expansion (2) 49
Algorithm 6 getPathsOrderedByScore 49

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

List of codes

Code 1 SPARQL query example 22
Code 2 Using key expiration time for data in the cache 55
Code 3 Using the fork/join framework to compute the Jaccard index 56

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

List of Abreviations

BFS – Breadth-first Search

DCG – Discounted Cumulative Gain

EBR – Exclusivity-based Relatedness

HDFS – Hadoop Distributed File System

IRI – Internationalized Resource Identifier

KB – Knowledge Base

PF-ITF – Predicate Frequency Inverse Triple Frequency

PMI - Pointwise Mutual Information

PT – Property Table

RDF – Resource Description Framework

ST – Statement Table

Turtle – Terse RDF Triple Language

UI – User Interface

VP – Vertical Partitioning

WLM – Wikipedia Link-based Measure

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

All we have to decide is what to do
with the time that is given us.

J. R. R. Tolkien, The Fellowship of the Ring.

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

1
Introduction

1.1
Context and Motivation

The expansion of data available on the Web grew enormously in recent
years. With the rise of the Semantic Web, much of this data is encoded using
the RDF data model. Knowledge bases, such as DBpedia (LEHMANN et al.,
2015), are expressed using the RDF data model and can be viewed as graphs
whose nodes represent entities and whose edges denote relationships. The
entity relatedness problem refers to the question of exploring a knowledge base,
represented as an RDF graph, to discover and understand how two entities are
connected. More precisely, this problem can be defined as: “Given an RDF
graph G and a pair of entities a and b, represented in G, compute the paths
in G from a to b that best describe the connectivity between a and b”.

Searching for relevant relationship paths between two entities has ap-
plications in several areas. For example, security agencies may be interested
in analyzing terrorist networks to discover complex relationships between two
suspected terrorists. In the business area, identifying implicit relationships be-
tween products and customers helps improve recommendations of new prod-
ucts and generate effective advertisements for potential customers. The aca-
demic community may also be interested in finding interrelationships between
researchers in co-authorship networks, and a historian may also want to iden-
tify the relationships between two politicians in History. Large knowledge bases
describe entities and the relations between them and can be used to search
for these kinds of relationships. However, entities may share too many direct
relations and relationship paths, making it challenging to identify relevant re-
lationship paths between a pair of entities.

Several strategies and tools have been proposed to discover the semantic
associations between a pair of entities in a knowledge base. Some approaches
first identify all possible relationships between two entities using SPARQL
queries to retrieve paths up to a certain length (HEIM et al., 2009; PIRRò,
2015; HERRERA et al., 2016) and then rank the results based on some
predefined informativeness measures. Pathfinding techniques have also been
used to identify entity relationships (FANG et al., 2011; VOCHT et al., 2013;
CHENG; ZHANG; QU, 2014; HERRERA, 2017).

One approach is to apply a two-step strategy: (1) search for relationship

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 1. Introduction 18

paths between a pair of entities; and (2) rank the paths found and select those
that are relevant. This strategy must, however, be refined to avoid generating
and ranking a very large number of paths. A particular refinement for this
approach, which we call path search strategy, goes as follows.

The first step adopts backward search (LE et al., 2014), which is a
breadth-first search strategy that expands the paths starting from each input
entity, in parallel, until a candidate relationship path is generated. The
expansion process uses activation criteria to prioritize certain paths over others
and to filter the entities less related to the target entities so that it can be easier
to identify more meaningful paths. These activation criteria give priority to
entities with a low degree in the graph and maintain entities that are similar
to the last entity reached in a partially constructed path, using some similarity
measure. The second step adopts ranking approaches that use the semantics of
the relationships between the entities to assign a score to relationship paths.
After sorting the set of relationship paths found in the first step, the top-k
paths are selected to describe the connectivity of an entity pair.

Many approaches evaluate the accuracy of relationship path rankings
with the help of user experiments (FANG et al., 2011; VOCHT et al., 2013;
CHENG; ZHANG; QU, 2014; PIRRò, 2015; HERRERA et al., 2016), while
others use a ground truth (HERRERA et al., 2017) to evaluate different
strategies that address the entity relatedness problem.

Large public knowledge bases, such as DBpedia, have billions of facts
in RDF format that can be queried using semantic query languages, such as
SPARQL. However, as the volume of RDF data increases, the computational
complexity of indexing and querying large RDF datasets becomes a signif-
icant challenge. The distributed nature of the Semantic Web infrastructure
itself suggests querying RDF datasets in a parallel and distributed way. In-
deed, many distributed SPARQL query engines, built on top of distributed
data processing frameworks, have been introduced to overcome this prob-
lem (ROHLOFF; SCHANTZ, 2010; HUSAIN et al., 2011; HUANG; ABADI;
REN, 2011; PRZYJACIEL-ZABLOCKI et al., 2012; VIRGILIO; MACCIONI,
2014; SCHäTZLE et al., 2016; ABDELAZIZ et al., 2017; SUN et al., 2019;
RAGAB et al., 2021). Hence, the entity relatedness problem may also benefit
from parallel and distributed approaches.

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 1. Introduction 19

1.2
Goal and Contributions

The main goal of this thesis is to investigate flexible and extensible
approaches to the entity relatedness problem that scale to large knowledge
bases.

The first contribution of this thesis is the proposal and implementation
of an approach and a framework, called CoEPinKB, that helps address the
entity relatedness problem. CoEPinKB differs from the solution proposed
in Herrera (2017) in three main aspects. First, CoEPinKB was designed to
make it easy for developers to add new entity similarity and relationship path
ranking measures to generate new path search strategies. Second, CoEPinKB
has a simple and practical Web user interface that facilitates the interaction of
the users with the framework and provides an API that facilitates executing
different experiments and analyzing the results. Lastly, CoEPinKB was en-
gineered to work with any knowledge base accessible using a remote SPARQL
query endpoint over HTTP.

The analysis in Herrera (2017) evaluated nine relationship path search
strategies on two entertainment domains. However, the analysis did not
evaluate the performance of these strategies concerning execution time. The
second contribution of this thesis is the use of CoEPinKB to evaluate the
performance of these different strategies concerning execution time on two
entertainment domains in DBpedia.

The third contribution of this thesis is the conception of a novel approach
to address the entity relatedness problem in a distributed manner. The thesis
describes a proof-of-concept implementation of the approach as a framework,
called DCoEPinKB. To the best of our knowledge, this is the first work
addressing the entity relatedness problem using a distributed strategy.

The fourth contribution of this thesis is the construction of test datasets
from the music and movies domains, collected from two subsets of the English
DBpedia corpus, that support the evaluation of the accuracy of path search
strategies.

Finally, the fifth contribution is an extensive experimental evaluation
of the correctness and performance of DCoEPinKB, comparing it with
CoEPinKB, using the previously constructed test datasets.

The contributions of this thesis were partly published in Jiménez, Leme
& Casanova (2021) and presented at the Brazilian Symposium on Databases
(SBBD 2021) (JIMéNEZ et al., 2021).

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 1. Introduction 20

1.3
Structure of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 summa-
rizes background information about RDF, the representation of RDF in re-
lational databases, entity similarity measures, relationship path ranking mea-
sures, and ranking accuracy. Chapter 3 reviews related work. Chapter 4 de-
scribes the proposed solutions and the process of finding relevant relation-
ship paths between entity pairs through a backward search algorithm. Chap-
ter 5 presents the architecture and the implementation of the CoEPinKB
and DCoEPinKB frameworks and shows how they can be used. Chapter 6
presents a performance evaluation of a family of path search strategies us-
ing the proposed frameworks. Finally, Chapter 7 presents the conclusions and
future work of the thesis.

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

2
Background

This chapter provides the required background information to under-
stand the basic principles of RDF and the use of similarity and path ranking
measures in knowledge graphs to find relevant relationship paths between an
entity pair.

2.1
RDF

The Resource Description Framework (RDF) is a flexible and extensi-
ble data model for representing information about resources (SCHREIBER;
RAIMOND, 2014). Resources can be anything, including documents, people,
physical objects, and abstract concepts. RDF allows representing this variety
of resources and their relationships through RDF triples, which are statements
about resources that have the form (s, p, o), where s stands for the subject, p
for the predicate, and o for the object.

The subject of an RDF triple is an IRI or a blank node, the predicate is an
IRI, and the object is an IRI, a literal or a blank node. The abbreviation IRI is
short for Internationalized Resource Identifier. An IRI identifies a resource of
the real world and is a generalization of URI (Uniform Resource Identifier)
that permits a wider range of Unicode characters. An example of IRI is
dbr:Paul_Newman1. A literal is a basic value of a specific data type, that defines
the range of possible values, such as strings, numbers, and dates. Unlike IRIs
and literals, blank nodes do not identify specific resources and can always be
replaced by Skolem IRIs (CYGANIAK; WOOD; LANTHALER, 2014).

The triple (dbr:Paul_Newman, dbo:spouse, dbr:Joanne_Woodward)
is an example that states that Paul Newman was married to JoanneWoodward.
The RDF triple can also be denoted without parentheses and commas and
ending with a dot as:

dbr:Paul_Newman dbo:spouse dbr:Joanne_Woodward .

The term resource is synonymous with entity as it is used in the RDF
Semantics specification (HAYES; PATEL-SCHNEIDER, 2014), such that, in
this thesis, both terms are used interchangeably. The predicate represents the
nature of the relationship between the subject and the object and is called in

1https://dbpedia.org/resource/Paul_Newman

https://dbpedia.org/resource/Paul_Newman
DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 2. Background 22

RDF a property. While object properties relate resources to resources, datatype
properties assign literals to resources.

An RDF dataset R is a set of RDF triples. It can be modeled as a labeled
graph GR = (VR, ER, LR), where VR is the set of resources and literals that
occur as subject or object of the triples in R and there is an edge (s, o) in ER
labeled with p = LR(s, o) iff the triple (s, p, o) occurs in R. An IRI in VR will
be referred to as an entity occurring in G.

An undirected path π in an RDF graph GR between entities w0 and wk
is an expression of the form (w0, p1, w1, p2, w2, . . . , pk−1, wk−1, pk, wk), where:
k is the length of the path; wi is an entity in GR such that wi and wj are
different, for 0 ≤ i 6= j ≤ k; and either (wi, wi+1) or (wi+1, wi) are edges
of G labeled with pi+1, for 0 ≤ i < k. Note that, since a path is undi-
rected, but G is a directed graph, we allow either (wi, wi+1) or (wi+1, wi)
to be used to generate a path. For example, the following expression rep-
resents a path that connects Paul Newman and Joanne Woodward, where
k = 2: (dbr:Paul_Newman, dbo:starring, dbr:Our_Town_(2003_film),
dbo:executiveProducer, dbr:Joanne_Woodward). This path exists because
the following triples occurs in R (we recall that “ˆp” denotes the inverse of a
property p in SPARQL notation):

dbr:Paul_Newman ˆdbo:starring dbr:Our_Town_(2003_film) .

dbr:Our_Town_(2003_film) dbo:executiveProducer dbr:Joanne_Woodward .

A large number of RDF datasets are available and interlinked on the Web
as Linked Data (BERNERS-LEE, 2006), and many of them offer a querying
facility through SPARQL (PRUD’HOMMEAUX; SEABORNE, 2008), a query
language for RDF. The results of SPARQL queries can be result sets or
RDF graphs. An example of a SPARQL query that returns direct RDF paths
of length 4 between dbr:Paul_Newman and dbr:Joanne_Woodward is shown
below:

Code 1: SPARQL query example

1 SELECT *

2 WHERE { dbr: Paul_Newman ?p1 ?e1 .

3 ?e1 ?p2 ?e2 .

4 ?e2 ?p3 ?e3 .

5 ?e3 ?p4 dbr: Joanne_Woodward . }

The WHERE clause contains triple patterns that are matched with an RDF
graph. A triple pattern is similar to an RDF triple, except that the subject,
predicate, or object can be a query variable (denoted in SPARQL prefixed with
“?”, such as ?e1 or ?p3).

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 2. Background 23

As the volume of RDF data grows, the computational complexity of
indexing and querying large datasets becomes challenging. Distributed data
processing frameworks like Apache Spark (ZAHARIA et al., 2010) are not
designed to perform native RDF processing. However, relational schemas can
be used to represent RDF data in an efficient and scalable way.

The Statement Table (ST), also known as triple table (FAYE; CURé;
BLIN, 2012; ABDELAZIZ et al., 2017), can be considered the most straightfor-
ward way of storing RDF triples. It directly maps RDF data onto a table with
three columns (subject, predicate, object), in which each tuple corresponds to
an RDF statement. This solution is the simplest, and it has been adopted by
several existing RDF triplestores (MAHRIA; CHAKER; ZAHI, 2021). How-
ever, depending on the kind of queries executed on the dataset, the storage
of RDF triples in a single table makes the queries very slow to execute due
to expensive self-joins. Table 2.1 shows an example of the ST representation
schema of a small RDF graph.

Table 2.1: Example of a Statement Table representation

subject predicate object
dbr:Paul_Newman dbo:type dbo:Person
dbr:Paul_Newman dbo:spouse dbr:Joanne_Woodward
dbr:Paul_Newman dbo:child dbr:Melissa_Newman
dbr:Paul_Newman dbo:child dbr:Nell_Newman

dbr:Joanne_Woodward dbo:type dbo:Person
dbr:Joanne_Woodward dbo:child dbr:Melissa_Newman

dbr:Our_Town_(2003_film) dbo:type dbo:Film
dbr:Our_Town_(2003_film) dbo:starring dbr:Paul_Newman
dbr:Our_Town_(2003_film) dbo:executiveProducer dbr:Joanne_Woodward

.

The Property Table (PT) was a proposal to try to overcome some of the
scalability limits that persist in the ST approach and it can be classified into
two types: clustered property table and property-class table (ABDELAZIZ et
al., 2017). The basic idea behind the property table is to discover clusters of
subjects that share the same properties and to group them into a table. For
each tuple of the property table, one column contains the subject of the triples
and one or more columns contain the property values for that subject.

The clustered property table consists of a unique table whose dimensions
are determined by the number of distinct subjects and predicates. Table 2.2
shows the clustered property table representation schema of the same example
in Table 2.1.

On the other hand, the property-class table approach uses different tables,
one for each "type" of subject, and exploits the rdf:type predicate to cluster

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 2. Background 24

Table 2.2: Example of a Clustered Property Table representation
subject rdf:type rdf:spouse rdf:child rdf:starring rdf:executiveProducer

dbr:Paul_Newman dbo:Person dbr:Joanne_Woodward dbr:Melissa_Newman NULL NULL
dbr:Joanne_Woodward dbo:Person dbr:Paul_Newman dbr:Melissa_Newman NULL NULL

dbr:Our_Town_(2003_film) dbo:Film NULL NULL dbr:Paul_Newman dbr:Joanne_Woodward
.

similar sets of subjects in the same table. Table 2.3 shows the property-class
table representation schema of the same example in Table 2.1.

Table 2.3: Example of a Property-Class Table representation

Person
subject rdf:spouse rdf:child

dbr:Paul_Newman dbr:Joanne_Woodward dbr:Melissa_Newman
dbr:Joanne_Woodward dbr:Paul_Newman dbr:Melissa_Newman

.

Film
subject rdf:starring rdf:executiveProducer

dbr:Our_Town_(2003_film) dbr:Paul_Newman dbr:Joanne_Woodward
.

The main benefit of using PT is that complex queries can be executed
avoiding expensive self-joins. However, it is still expensive, because some
complex queries need to combine data from several tables. Additionally,
this approach generates many NULL values since, for a given cluster, not all
properties will be defined for all subjects (FAYE; CURé; BLIN, 2012). Due to
its sparse tables representation, it has a high storage overhead, when a large
number of predicates is present in the knowledge base (ABDELAZIZ et al.,
2017). This RDF relational schema is also less flexible than the ST approach
as the clustered properties might need to be rearranged as data changes and
it can not represent multi-valued properties.

Vertical Partitioning (VP) is an alternative relational schema for RDF
data proposed by Abadi et al. (2009) in which the RDF triples table is
decomposed into a table of two columns (subject, object) for each unique
property in the knowledge base. The first column stores the subjects of the
triples that have the property defined for the table, and the second column
contains the object values for those subjects. Table 2.4 shows the vertical
partitioning representation schema of the same example in Table 2.1.

This approach admits multi-valued attributes and does not store NULL
values. However, Sidirourgos et al. (2008) pointed out potential scalability
problems for the VP approach, when the dataset contains a large number of
properties. Indeed, it leads to a large number of tables, which is problematic

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 2. Background 25

Table 2.4: Example of a Vertical Partitioning representation

rdf:type
subject object

dbr:Paul_Newman dbo:Person
dbr:Joanne_Woodward dbo:Person

dbr:Our_Town_(2003_film) dbo:Film
.

rdf:child
subject object

dbr:Paul_Newman dbr:Melissa_Newman
dbr:Paul_Newman dbr:Nell_Newman

dbr:Joanne_Woodward dbr:Melissa_Newman
.

rdf:spouse
subject object

dbr:Paul_Newman dbr:Joanne_Woodward
dbr:Joanne_Woodward dbr:Paul_Newman

.

rdf:starring
subject object

dbr:Our_Town_(2003_film) dbr:Paul_Newman
.

rdf:executiveProducer
subject object

dbr:Our_Town_(2003_film) Joanne_Woodward
.

when executing queries that require scanning multiple tables to reconstruct
information related to a single entity.

In this thesis, the ST schema was used. For our problem, this schema is
the most suitable among the three presented above due to the type of queries
that our framework performs mostly and the particularities of the graphs used,
in which, for example, there are a large number of properties.

2.2
Similarity Measures

2.2.1
Overview

A similarity measure is a real-valued function σ that quantifies the
similarity between two objects e and f , such that σ(e, f) ∈ [0, 1], σ(e, e) =
1, and σ(e, f) = σ(f, e). Similarity measures can be classified into four
main categories (MEYMANDPOUR; DAVIS, 2016): (i) distance-based models,
which are based on the structural representation of the underlying context;
(ii) feature-based models, which define concepts or entities as sets of features;
(iii) statistical methods, which consider statistics derived from the underlying
context; and (iv) hybrid models, which comprise combinations of the three
basic categories.

The remainder of this section describes the similarity measures that will
be used in the proposed solution to address the entity relatedness problem,
i.e., the Jaccard index (JACCARD, 1901), the Wikipedia Link-based
Measure (MILNE; WITTEN, 2008) and SimRank (JEH; WIDOM, 2002).

Feature-based similarity measures, such as the Jaccard index, assume

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 2. Background 26

that concepts can be represented as sets of features and assess the similarity of
concepts based on the commonalities among their feature sets. In this thesis,
the set of features of an entity is modeled as a set of entities in its surroundings.

Let T be an RDF dataset and G be the RDF graph induced by T . For
two entities a and b in G, two abstract walkers are deployed to traverse the
graph at a specific depth d to acquire features. At each depth, a walker collects
entities, after visiting depth d, the walkers return the sets of features Ad and
Bd of entities a and b, respectively. Note that an entity z ∈ Ad iff there is a
path from a to z of length less than or equal to d.

2.2.2
Jaccard Index

The Jaccard index (JACCARD, 1901), also known as the Jaccard
similarity coefficient, is a classical similarity measure with several practical
applications in information retrieval, data mining, machine learning, and many
more areas (LESKOVEC; RAJARAMAN; ULLMAN, 2014). The Jaccard
index between two entities a and b in G is defined as the cardinality of the
intersection of their sets of features Ad and Bd divided by the cardinality of
their union:

J(a, b) = |Ad ∩Bd|
|Ad ∪Bd|

= |Ad ∩Bd|
|Ad|+ |Bd| − |Ad ∩Bd|

(2-1)

If a = b or Ad ∪Bd = ∅, we define J(a, b) = 1.

2.2.3
Wikipedia Link-based Measure

The Wikipedia Link-based Measure (WLM), proposed by Milne
& Witten (2008), was initially defined to compute the semantic similarity
of two Wikipedia pages by comparing their incoming and outgoing links.
The main difference between this similarity measure and other contemporary
Wikipedia-based approaches is the use of Wikipedia’s hyperlink structure
to define relatedness rather than its category hierarchy or textual content.
Wikipedia pages that link common pages indicate relatedness, while pages
that link disparate pages suggest the opposite. This measure can be also used
to measure the similarity between two entities a and b in G and is defined as:

WLM(a, b) = 1− log(max(|Ad|, |Bd|))− log(|Ad ∩Bd|)
log(|V |)− log(min(|Ad|, |Bd|))

(2-2)

where V is the set of entities of G.

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 2. Background 27

2.2.4
SimRank

SimRank (JEH; WIDOM, 2002) is a general link-based similarity mea-
sure that is based on a simple and intuitive graph-theoretic model and is
applicable in any domain with object-to-object relationships. It measures the
similarity of the structural context in which objects occur based on their rela-
tionships with other objects.

The intuition behind SimRank is that, in many domains, two objects
are considered similar if they are referenced by similar objects. Entities a and
b are similar if they are related to entities x and y, respectively, and x and
y are themselves similar. The base case considers that entities are similar to
themselves. This similarity measure can be inferred by recursively considering
the similarity of the neighbors of two objects.

Let G be an RDF graph and w be an entity (node) in G. A node v is
an in-neighbor of w iff there is an edge (v, w) in G. Let I(w) denote the set of
in-neighbors of w in G. The SimRank score s(a, b) between entities a and b is
defined as follows:

s(a, b) = λ

|I(a)||I(b)|
∑
c∈I(a)

∑
d∈I(b)

s(c, d) (2-3)

where λ is a confidence level between 0 and 1. If a = b, we define
s(a, b) = 1. If I(a) ∪ I(b) = ∅, we define s(a, b) = 0.

The two main limitations of many algorithms that compute SimRank
are that the computing cost can be very high in practice and that they can
only be applied to static graphs. Due to the computational complexity of
SimRank, there are many studies to speed up such calculations (LIZORKIN;
VELIKHOV, 2008; LI et al., 2010; LI et al., 2020; HAMEDANI; KIM, 2021).

2.3
Relationship Path Ranking Measures

2.3.1
Overview

After finding relationship paths between two entities, one important
step is to rank the paths and consider only the top-k most relevant ones.
A relationship path ranking measure r considers each path π between two
entities a and b in an RDF graph G as a sequence of properties and nodes, as
defined in Section 2.1, analyses each component in π, and generates a score. A
higher score indicates a greater relevance.

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 2. Background 28

One simple measure ranks the paths according to the distance between
the two entities and prioritizes the shortest paths. However, there are more
complex and accurate relationship path ranking measures that consider the
semantic of the relationships that link the entities.

The remainder of this section describes the relationship path rank-
ing measures that will be used in this thesis to address the entity relat-
edness problem, i.e., the Predicate Frequency Inverse Triple Fre-
quency (PIRRò, 2015), the Exclusivity-based Relatedness (HULPUş;
PRANGNAWARAT; HAYES, 2015) and the Pointwise Mutual Informa-
tion (CHURCH; HANKS, 1990) to evaluate different factors of the constituent
RDF predicates of each relationship path. For the next subsections, let T be
an RDF dataset, G be the RDF graph induced by T , p be a predicate in T (a
property in G) and w be an entity in G.

2.3.2
Predicate Frequency Inverse Triple Frequency

The Predicate Frequency Inverse Triple Frequency (PF-ITF),
proposed by Pirrò (2015), is an adaptation of the original TF-IDF used in
information retrieval that considers the participation of a predicate p in all
triples in an RDF dataset and can be defined as follows. The frequency of
p incoming to (outgoing from) w in G, pfwi (p,G) and pfwo (p,G), are shown
in Equation 2-4 and Equation 2-5, respectively. The inverse triple frequency
of p in G, itf(p,G), and the predicate frequency inverse triple frequency,
pfitfwx (p,G), are shown in Equation 2-6 and Equation 2-7, respectively.

pfwi (p,G) = |∗
p−→ w|

|∗ → w|
(2-4)

pfwo (p,G) = |w
p−→ ∗|

|w → ∗|
(2-5)

itf(p,G) = log |T |
|∗ p−→ ∗|

(2-6)

pfitfwx (p,G) = pfwx (p,G)× itf(p,G) (2-7)

where |∗ p−→ w| is the number of triples in G where the predicate p

is incoming to w, |w p−→ ∗| is the number of triples where the predicate p
is outgoing from w, |∗ → w| is the total number of triples incoming to w,
|w → ∗| is the total number of triples outgoing from w, and |∗ p−→ ∗| is the
total number of triples including p. Note that, in Equation 2-7, pfitfwx (p,G)
can use pfwi (p,G) or pfwo (p,G).

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 2. Background 29

Let π(w0, w1) = (w0, p1, w1) be a path between w0 and w1 in G of length
k = 1. The score of π is defined as:

score(π(w0, w1), G) = pfitfw0
o (p1, G) + pfitfw1

i (p1, G)
2 (2-8)

The score of a path π(w0, wk) = (w0, p1, w1, . . . , wk−1, pk, wk), for k > 1,
is defined as:

score(π(w0, wk), G) = score(π(w0, w1), G) + . . .+ score(π(wk−1, wk), G)
k

(2-9)

2.3.3
Exclusivity-based Relatedness

The Exclusivity-based Relatedness (EBR), introduced by Hulpuş,
Prangnawarat & Hayes (2015), claims that a relation between two concepts
is stronger if each of the concepts is related through the same type of
relationship to fewer other concepts. This property of relations is called by
the authors extitexclusivity. Using the notation introduced to define PF-ITF,
the exclusivity of a relationship a p−→ b is defined as:

exclusivity(a p−→ b) = 1
|a p−→ ∗|+ |∗ p−→ b| − 1

(2-10)

The denominator is subtracted by 1 because the relationship a
p−→ b

is otherwise counted twice, once for the relationships outgoing from a and
once for the relationships incoming to b. The score of a path π(w0, wk) =
(w0, p1, w1, . . . , wk−1, pk, wk) in G is defined as:

score(π(w0, wk), G) = 1∑k
i=1 1/exclusivity(wi−1

pi−→ wi)
(2-11)

2.3.4
Pointwise Mutual Information

The Pointwise Mutual Information (PMI), proposed by Church
& Hanks (1990), measures the co-occurrence strength between two items.
It relates the probabilities of the individual occurrence of the items to the
probability of both items occurring together. The PMI score of a path is
estimated based on the co-occurrence of the properties and entities in the
path. We consider three cases in the computation of the relevance of a path:

1. Co-occurrence of two properties pr and ps, when they are properties of
the same entity. (Equation 2-12)

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 2. Background 30

2. Co-occurrence of a property p and an entity w, when p is outgoing from
w. (Equation 2-13)

3. Co-occurrence of a property p and an entity w, when p is incoming to w.
(Equation 2-14)

These cases can be formalized as follows:

PMI(pr, ps) = log f(pr, ps)
f(pr) ∗ f(ps)

(2-12)

PMI(w, p) = log f(w, p)
f(w) ∗ f(p) (2-13)

PMI(p, w) = log f(p, w)
f(p) ∗ f(w) (2-14)

where f(., .) is the frequency that two items co-occur in G and f(.) is
the frequency of a property or entity in G. The score of a path π(w0, wk) =
(w0, p1, w1, . . . , wk−1, pk, wk) in G is defined as:

score(π(w0, wk), G) = median{PMI(pi, pj)|1 ≤ i 6= j ≤ k}

+ (1/2k) ∗ (PMI(w0, p1) + . . .+ PMI(wk−1, pk)
+ PMI(p1, w1) + . . .+ PMI(pk, wk))

(2-15)

2.4
Measuring Ranking Accuracy

The list of the top-k most relevant relationship paths between two
entities, obtained after using some relationship path ranking measure, can be
compared to a golden standard. This section recalls the definition of normalized
discounted cumulative gain, which will be used in Chapter 6 to measure the
accuracy of the different path search strategies.

The Discounted Cumulative Gain (DCG) is a well-known measure pro-
posed by Järvelin & Kekäläinen (2002) and used in information retrieval to
assess ranking accuracy. This measure accumulates the gain from the top of a
ranked list to the bottom, penalizing lower ranks, and can be parameterized
to consider only the top-k elements of the ranked list.

Consider a list of n documents with ratings rel1, . . . , reln. The discounted
cumulative gain of the top-k results, with 1 ≤ k ≤ n, denotedDCGk, is defined
as:

DCGk = rel1 +
k∑
i=2

reli
log2(i+ 1) (2-16)

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 2. Background 31

DCGk is normalized by IDCGk, the discounted cumulative gain for an
ideal ranking of the top-k results. Then, the normalized discounted cumulative
gain is defined as:

nDCGk = DCGk

IDCGk

(2-17)

Note that in a perfect ranking algorithm, the DCGk will be the same as
the IDCGk, producing an nDCGk equal to 1.

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

3
Related Work

In this chapter, we review research that introduced approaches for
discovering and ranking entity relationship paths in knowledge bases, ways to
measure the effectiveness of path search strategies, as well as distributed query
processing systems that allow similarity-based operations, and distributed
engines for processing large RDF datasets.

3.1
Entity Relationship Discovery and Ranking in Knowledge Bases

Several strategies and tools have been proposed to discover the semantic
associations between a pair of entities in a knowledge base. Some approaches
first identify all possible relationships between two entities, using SPARQL
queries to retrieve paths up to a certain length (HEIM et al., 2009; PIRRò,
2015; HERRERA et al., 2016), and then rank the results based on some
predefined informativeness measures. Pathfinding techniques have also been
used to identify entity relationships (FANG et al., 2011; MOORE; STEINKE;
TRESP, 2012; VOCHT et al., 2013; CHENG; ZHANG; QU, 2014; HERRERA,
2017).

Heim et al. (2009) proposed an approach that automatically reveals
relationships between two known entities and displays them as a graph.
The relationship paths are found by an algorithm based on the concept of
decomposition of an RDF graph (LEHMANN; SCHüPPEL; AUER, 2007) and
composed of several SPARQL queries that search iteratively for paths with
increasing length, starting from zero, between the input entities. The authors
presented RelFinder, an implementation of this approach, and demonstrated
its applicability using an example from the DBpedia. However, this approach
does not provide mechanisms for ranking or comparing paths.

REX (FANG et al., 2011) is a system implemented in Python that takes
a pair of entities in a given knowledge base as input and produces a ranked list
of relationship explanations. The authors consider a relationship explanation
as a constrained graph pattern and its associated graph instances derivable
from the underlying knowledge base. REX implements different algorithms
for finding the relationship explanations, adapted from solutions proposed for
the keyword search problem in databases. The PathEnumBasic algorithm is
based on the backward expansion search introduced in BANKS (BHALOTIA
et al., 2002) and generates partial paths from input entities concurrently, with

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 3. Related Work 33

shorter paths being generated first. The second path enumeration algorithm
PathEnumPrioritized is a direct adaption of the bidirectional search (KA-
CHOLIA et al., 2005), an improved version of BANKS, and instead of always
expanding the shortest partial paths, the degree of the nodes is used as an
activation score to prioritize the expansion. The authors also proposed some
interestingness measures for ranking relationship explanations and performed
user experiments to demonstrate the effectiveness of the algorithms.

Moore, Steinke & Tresp (2012) proposed an approach that can find
informative paths between two specified nodes. It performs a shortest paths
search between the two nodes using a metric that just depends on the degrees
of adjacent nodes and favors paths via low-degree nodes, thus ensuring that
the paths prefer more specific and informative relationships over general ones.

Vocht et al. (2013) introduced an approach for pathfinding that takes
into account the meaning of the connections and uses a distance metric based
on Jaccard. It applies the measure to estimate the similarity between two
nodes and to assign a weight based on the random walk, which ranks the
rarest resources higher. Vocht et al. (2016) proposed an in-depth extension
of this algorithm which reduces arbitrariness by increasing the relevance of
links between nodes through additional pre-selection and refinement steps.
The authors also compared and measured the effectiveness of different search
strategies through user experiments.

Explass is an approach proposed by Cheng, Zhang & Qu (2014) that
explores a knowledge base searching for associations and provides a list of
the top-k clusters, which are labeled with an association pattern that gives
users a conceptual summary of the associations in the cluster. The clusters
are obtained by formulating and solving a data mining problem, and then the
top-k ones are found by formulating and solving an optimization problem.
Explass integrates patterns with facet values, which are classes of entities
and relationships that appear in associations, and that can be used by users
to refine the search and better explore associations. The authors compared
Explass with two existing related approaches by conducting a user study
and tested the statistical significance of the results. Cheng, Shao & Qu
(2017) examined existing techniques for ranking semantic associations and
proposed two new techniques based on the heterogeneity or homogeneity of
the constituents of a semantic association. Cheng, Liu & Qu (2021) presented
a fast algorithm for semantic associations search by enumerating and joining
paths, which proved a tighter bound and allowed more effective distance-based
pruning of the search space than previous work.

Pirrò (2015) introduced RECAP, a framework to generate different types

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 3. Related Work 34

of relatedness explanations between entities, possibly combining information
from multiple knowledge bases. RECAP goes beyond related approaches such
as REX and Explass, as it allows to build different types of explanations (for
example, graphs and sets of paths), thus controlling the amount of information
displayed. The author first formalizes the notion of relatedness explanation and
introduces different criteria to build explanations based on information theory,
diversity, and their combinations. The first approach that the author proposed
for ranking paths between a pair of entities is based on the informativeness of
a path and uses the novel PF-ITF measure to calculate the score of a path.
The author conducted experiments to investigate whether RECAP provides
useful explanations to the user.

DBpedia Profiler is a tool proposed by Herrera et al. (2016) which
implements a strategy to generate connectivity profiles for entities represented
in DBpedia. The tool uses SPARQL queries to identify relationship paths
that connect the given pair of entities and adopts a strategy based on
semantic annotations, which use a similarity measure, to group and summarize
the collected paths. The authors made experiments to compare DBpedia
Profiler with RECAP and the results showed that DBpedia Profiler
outperforms RECAP in terms of performance and usability.

As stated above, many approaches (FANG et al., 2011; VOCHT et
al., 2013; CHENG; ZHANG; QU, 2014; PIRRò, 2015; HERRERA et al.,
2016) evaluate relationship paths rankings with the help of user experiments.
Herrera et al. (2017), by contrast, proposed the Entity Relatedness
Test Dataset, a ground truth of paths between pairs of entities in two
entertainment domains in the DBpedia that supports the evaluation of different
strategies that address the entity relatedness problem. The authors used
information from the Internet Movie Database (IMDb)1 and last.fm2 to
generate specialized relationship path rankings between entity pairs in the
movies and music domains, respectively. For each domain, the dataset contains
20 pairs of entities, each with a ranked list with 50 relationship paths based
on information about their entities found in IMDb and last.fm, and on
information about their properties, computed from DBpedia. However, the
authors do not specify which version of the DBpedia they relied on to
generate the ground truth, making it difficult to use their test dataset in our
experiments considering that the content of the DBpedia has changed since
then. Section 6.2.1.8 of this thesis circumvents this problem by introducing a
strategy to construct ground truths for any given version of the DBpedia.

1https://www.imdb.com/
2https://www.last.fm/

https://www.imdb.com/
https://www.last.fm/
DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 3. Related Work 35

Herrera (2017) introduced a generic search strategy, based on the back-
ward search heuristic proposed by Le et al. (2014) for keyword search, which
combines SPARQL queries, activation criteria, similarity, and ranking mea-
sures to find relevant paths between a pair of entities in alternative ways. This
approach expands the paths starting from two source entities and prioritizes
certain partial paths over others until relationship paths between these enti-
ties are generated. The activation criteria consider the degree of the entities
and use similarity measures, such as Jaccard index, WLM, and SimRank.
For ranking the paths found and selecting those that are relevant, the author
used ranking measures, such as PF-ITF, EBR, and PMI. Finally, the author
evaluated the accuracy of the results of the different strategies with the help of
the ground truth proposed by Herrera et al. (2017). However, this work lacks
an evaluation of the performance, in terms of execution time, of each of the
different path search strategies, as well as a tool with a graphical user inter-
face that facilitates evaluating these strategies. The author also identified some
opportunities for future work, such as to develop a framework for the entity
relatedness problem, considering as points of flexibility the similarity measure
between entities and the path-ranking measure to identify relevant paths. This
thesis aims at filling this gap, as described in the following chapters.

3.2
Similarity-based operations on Distributed Query Processing Systems

Dima (SUN et al., 2017) is a distributed in-memory similarity-based
query processing system built on top of Spark (ZAHARIA et al., 2010). Dima
extends the Spark SQL programming interface and the Catalyst optimizer for
users to easily invoke similarity selection and similarity join query operations
in their data processing tasks. Similarity selection extends traditional exact
selection by tolerating errors and similarity join extends traditional exact join
by tolerating errors between records. Dima supports various data sources, such
as CSV, JSON, and Parquet, and implements two types of similarity: set-based
similarity, using the Jaccard index, and character-based similarity, using edit
distance. The authors proposed an approach for similarity-based queries that
employs offline distributed indexing.

Sun et al. (2019) improved Dima to support additional similarity oper-
ations, such as top-k selection and top-k join. Top-k selection computes the k
most similar records and top-k join computes the k most similar pairs. To avoid
expensive data transmission, the authors proposed Dima+, an approach that
uses a balance-aware signature selection to balance the workload in distributed
environments.

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 3. Related Work 36

Unlike Dima and Dima+, Kim et al. (2020) focused on handling very
large datasets that do not fit in memory. The authors extended Apache As-
terixDB, an open-source parallel data management system for semi-structured
data, to allow users to specify a similarity query, either by using a system-
provided function or specifying their logic as a user-defined function. They
presented an experimental study based on several large datasets on a parallel
computing cluster to evaluate the proposed techniques for supporting similar-
ity queries and presented a performance comparison with three other parallel
systems.

3.3
Processing Large RDF Datasets in Distributed Environments

The continuous growth of knowledge bases has led to the search for
new approaches and technologies to store, access, and querying RDF data.
Many distributed RDF systems have been introduced to overcome the prob-
lem of indexing and querying large RDF datasets (HUSAIN et al., 2009;
ROHLOFF; SCHANTZ, 2010; HUSAIN et al., 2011; HUANG; ABADI; REN,
2011; PRZYJACIEL-ZABLOCKI et al., 2012; VIRGILIO; MACCIONI, 2014;
SCHäTZLE et al., 2016; SCHäTZLE et al., 2016; ABDELAZIZ et al., 2017;
RAGAB; TOMMASINI; SAKR, 2019; RAGAB et al., 2020; RAGAB et al.,
2021). These systems are generally built on top of distributed data process-
ing frameworks, such as MapReduce (DEAN; GHEMAWAT, 2008) or Apache
Spark (ZAHARIA et al., 2010), partition the RDF graphs among multiple ma-
chines to handle big datasets, and parallelize query execution to reduce query
runtime.

SHARD is an open-source, horizontally scalable triplestore system pro-
posed by Rohloff & Schantz (2010) and built using the Hadoop implementation
of MapReduce. SHARD persists graph data as RDF triples and responds to
queries over this data in the SPARQL query language. Husain et al. (2011)
presented HadoopRDF, an scalable and fault-tolerant framework based on
Hadoop that supports data-intensive query processing. The authors proposed
a storage schema to store RDF data in HDFS3 and a new greedy algorithm
that overcomes the limitations of the algorithm previously introduced by Hu-
sain et al. (2009). The algorithm uses the MapReduce programming model
and produces a query plan whose cost, i.e., the number of Hadoop jobs that
will be executed to solve the query, is bounded by the logarithm of the to-
tal number of variables in the given SPARQL query. Huang, Abadi & Ren
(2011) presented a scale-out architecture for RDF data management using the

3Hadoop Distributed File System

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 3. Related Work 37

Hadoop framework. The authors described data partitioning and placement
techniques that reduce the amount of network communication at query time
and provided an algorithm for automatically decomposing SPARQL queries
into parallelizable Hadoop jobs. RDFPath is a declarative path query lan-
guage for RDF proposed by Przyjaciel-Zablocki et al. (2012) that automati-
cally transforms declarative path queries into MapReduce jobs and supports
the exploration of graph properties such as shortest paths between two nodes
in an RDF graph. Virgilio & Maccioni (2014) presented a distributed approach
to keyword search query over large RDF datasets that exploits the MapReduce
paradigm by switching the problem from graph-parallel to data-parallel pro-
cessing. This paradigm shift is necessary because MapReduce is an effective
data-parallel paradigm for computing algorithms that require reading the data
only once and, for this reason, it is not efficient to perform join-intensive tasks
typical of graph algorithms.

Schätzle et al. (2016) proposed ExtVP (Extended Vertical
Partitioning), a relational partitioning schema for RDF that extends the
vertical partitioning (VP) schema and uses a semi-join based preprocessing.
The authors also presented S2RDF (SPARQL on Spark for RDF), a dis-
tributed SPARQL query processor for large-scale RDF data implemented on
top of Spark. Schätzle et al. (2016) defined a property graph representation of
RDF for GraphX, the Apache Spark’s API for graphs and graph-parallel com-
putation. They also introduced S2X (SPARQL on Spark with GraphX), an
RDF engine that combines graph-parallel abstraction of GraphX to implement
the graph pattern matching part of SPARQL with data-parallel computation
of Spark to build the results of other SPARQL operators. The results of
the comparison of S2X with PigSPARQL (SCHäTZLE et al., 2013) show
that the combination of both types of computation can be beneficial, when
compared to a purely data-parallel execution.

Abdelaziz et al. (2017) presented a comparative survey of 22 state-of-
the-art distributed RDF systems. They described the execution model and
the graph partitioning strategy of each system, discussed the similarities and
differences, explained the various trade-offs, and categorized the systems based
on several characteristics. Then, they selected 12 representative systems and
performed a comprehensive experimental evaluation concerning preprocessing
cost, query performance, scalability, and workload adaptability, using a variety
of synthetic and real large datasets. The results suggest that specialized in-
memory systems provide the best performance, assuming the data can fit in
the cumulative memory of the computing cluster.

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 3. Related Work 38

The SPARKSQL RDF Processing Benchmarking4 is a system-
atic benchmarking project on the performance of Spark SQL for processing
vast RDF datasets. In the first phase of this project, Ragab, Tommasini &
Sakr (2019) presented an analysis of the execution time of Spark SQL for
answering SPARQL queries over RDF repositories on a centralized single-
machine configuration. The authors conducted experiments on datasets with
100K, 1M, and 10M triples and evaluated the impact of using alternative re-
lational schemas for RDF (i.e., ST, VT, and PT), various storage backends
(i.e., PostgreSQL, Hive, and HDFS) and different data formats (e.g., CSV,
Avro, Parquet and ORC). In the second phase of the project (RAGAB et al.,
2020), the experiments include a larger dataset than before in a distributed
environment. The authors evaluated the impact of using different RDF-based
partitioning techniques (i.e., subject-based, predicate-based, and horizontal-
based partitioning). Ragab et al. (2021) extended the previous experiments
with new proposed RDF relational schema representations: Extended Verti-
cally Partitioned Tables (ExtVP) and Wide Property Tables (WPT).

The strategies and frameworks described in this thesis take advantage
of the ideas presented in the state-of-art works summarized in the previous
sections to improve the process of identifying relevant paths between entity
pairs using similarity measures and path-ranking approaches to prioritize some
paths over others. The framework introduced by Jiménez, Leme & Casanova
(2021) implements path search strategies using a multi-thread approach, while
that proposed by Jiménez et al. (2021) is a distributed in-memory framework
built on top of Apache Spark.

4https://datasystemsgrouput.github.io/SPARKSQLRDFBenchmarking/

https://datasystemsgrouput.github.io/SPARKSQLRDFBenchmarking/
DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

4
Discovering Relevant Paths between Entity Pairs

This chapter describes the process of discovering relevant relationship
paths that connect two entities in an RDF graph using different path search
strategies that combine entity similarity and path ranking measures. We
propose an approach for doing that on a single-machine configuration using the
data parallel paradigm. Finally, we also propose an approach that extends that
paradigm to the distributed case, to address the entity relatedness problem on
a distributed scenario.

4.1
The Entity Relatedness Problem

4.1.1
Formalization of Problem

The entity relatedness problem refers to the question of exploring a
knowledge base, represented as an RDF graph, to discover and understand
how two entities are connected. An RDF knowledge base R is equivalent to
an RDF graph GR whose nodes represent the entities in R and whose edges
denote the relationships expressed in R. This is a convenient representation to
explore the connectivity in R of a pair of entities, a and b, which reduces to
computing paths in GR between a and b. Thus, the entity relatedness problem
can be defined as: “Given an RDF knowledge base R and a pair of entities a
and b, compute the paths in GR from a to b that best describe the connectivity
between a and b in R”

The main goal of this thesis is to facilitate the discovery and under-
standing of the relationship between entities in knowledge bases. Part of the
research was motivated by the opportunities for future work identified by Her-
rera (2017), who presented various strategies to understand the connectivity
between pairs of entities in a knowledge base. However, the author did not
propose a flexible framework, which developers could extend with additional
similarity and path ranking measures, and could be easily used by end-users
to experiment with different path search strategies.

4.1.2
Overview of the Proposed Solution

Let GR be the RDF graph that represents an RDF knowledge base R.
We consider a family of path search strategies that receive as input a pair of

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 4. Discovering Relevant Paths between Entity Pairs 40

target entities (w0, wk) in GR and output a list of ranked paths in GR from
w0 to wk. Each path search strategy in the family has two basic steps:

1. Find a set of paths in GR from w0 to wk such that each path satisfies a
set of selection criteria.

2. Rank the paths found and select the top-k relevant ones.

The first step of a path search strategy uses the backward search
heuristic (LE et al., 2014), which is a breadth-first search strategy that
expands the paths starting from each target entity, in parallel, until a candidate
relationship path is generated. The expansion process considers one or several
of the following selection criteria to prioritize certain paths over others and to
filter the entities less related to the target entities so that it can be easier to
identify more meaningful paths:

Entity similarity: Select a path (w0, p1, w1, p2, w2, . . . , pk−1, wk−1, pk, wk) iff
there is q ∈ [0, k] such that, for each i ∈ [0, q), wi and wi+1 are similar
and, for each j ∈ [q, k), wj and wj+1 are similar.

Bounded entity degree: Select a path whose intermediate entities, or at
least those intermediate entities that need to be expanded, have less
than n neighbors in GR.

Bounded path length: Select a path of maximum length equal to k.

The first criterion says that a path can be broken into two parts, left
and right, such that the entities on the left part are transitively similar to
the first entity, w0, and the entities on the right part are transitively similar
to the second entity, wk. This criterion maintains entities that are similar to
the last entity reached in a partially constructed path, using some similarity
measure, and can be implemented by a backward search strategy, as described
in the next section. This thesis considers the three entity similarity measures,
Jaccard index, WLM, and SimRank, described in Section 2.2.

This thesis also assumes that the bounded entity degree criterion
is always applied together with the entity similarity criterion because, as
stated Fang et al. (2011) and Moore, Steinke & Tresp (2012), it might be very
expensive to expand nodes with a large degree and it can also be assumed that
nodes with high degree influence the path search process with potentially very
unspecific information.

Paths between target entities can have an arbitrary length. However,
considering only paths of length at most k leads to relationship paths of

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 4. Discovering Relevant Paths between Entity Pairs 41

manageable size that users can better interpret. Related approaches, such
as REX (FANG et al., 2011), Explass (CHENG; ZHANG; QU, 2014),
RECAP (PIRRò, 2015), and DBpedia Profiler (HERRERA et al., 2016),
also considered bounded-length paths.

Figure 4.1 shows a simple example of the execution of the backward
search to find the relationship paths of maximum size equal to 4 between two
entities a and b in an RDF graph. It is important to note that the example
only presents a fragment of the entire RDF graph (Figure 4.1a).

a

a11

a12

a1m1

a21

a2m2

a22

a23

b21

b22

b2n2

b11

b12

b1n1

b

p1

p2

p3

p5

p4

p6

p5

p1

p2

p3

p4

p5

p1

p2

p3

p4

(a) Fragment of the RDF graph

a

a11

a12

a1m1

a21

a2m2

a22

a23

b21

b22

b2n2

b11

b12

b1n1

b

p1

p5

p4

p2

p3

p6

p5

p1

p2

p3

p4

p5

p1

p2

p3

p4

(b) Expanding a (iteration 1)

a

a11

a12

a1m1

b11

b12

b1n1

b
a21

a2m2

a22

a23

b21

b22

b2n2

p1

p5

p4

p2

p3

p6

p5

p1

p2

p3

p4

p5

p1

p2

p3

p4

(c) Expanding b (2)

a

a11

a12

a1m1 a2m2

a22

a23

b12

b1n1

b
a21

b11b21

b22

b2n2

p1

p5

p4

p2

p3

p5

p3

p4

p1

p2

p5

p1

p2

p3

p4

p6

(d) Expanding the neighbors of a (3)

a

a11

a12

a1m1 a2m2

a22

a23

b22

b2n2

b12

b1n1

b
a21

b21 b11

p1

p5

p4

p2

p3

p5

p3

p4

p1

p2

p5

p1

p2

p3

p4

p6

(e) Expanding the neighbors of b (4)

a a12 a22 b12 bP1

a a12 a23 b1n1 bP2

blank

p1

p1

p3

p2

p4

p3

p1

p5

(f) Relationship paths found

Figure 4.1: Backward search execution example

In the first iteration (Figure 4.1b), the entity a is expanded and the
neighbors most similar to a (i.e., a11, a12, a1m1) are selected to be expanded
in a later expansion step. During the expansion of b, in the second iteration
(Figure 4.1c), the entity b11 is discarded and will not be expanded in a later
expansion step as it is not included among the entities most similar to b. Only
entities b12 and b1n1 are selected to be expanded in a later expansion step.
In the third iteration (Figure 4.1d), the neighbors of the entity a selected
during the first iteration are expanded, except for the entity a11 which does
not satisfy the entity degree limit criterion, that is, it has a high number of

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 4. Discovering Relevant Paths between Entity Pairs 42

neighbors. In the fourth and final iteration (Figure 4.1e), entities b12 and b1n1

are expanded. Finally, it is verified that there are entities that were reached by
the expansions from the left and from the right (i.e., a22 and ba23), so that the
sub-paths that reach these entities can be joined to generate the paths from a

to b (Figure 4.1f).
The second step of a path search strategy receives as input the set of

paths found in the first step and uses a path ranking measure to sort the
paths by relevance. Each of these paths is a possible explanation of how the
two input entities are related. This thesis considers the three path ranking
measures, PF-ITF, EBR, and PMI, reviewed in Section 2.3.

Just to exemplify, we present some of the paths that could be found in
the DBpedia after using a strategy like that described in this section.

The entities dbr:Elizabeth_Taylor and dbr:Richard_Burton are
directly related by the path (dbr:Elizabeth_Taylor, dbo:spouse,
dbr:Richard_Burton). This is a very simple path, but it is relevant be-
cause being married is a very exclusive relationship. Other relationship paths
that connect these two entities are:

– (dbr:Elizabeth_Taylor,
ˆdbo:starring, dbr:Doctor_Faustus_(1967_film),
dbo:producer, dbr:Richard_Burton)

– (dbr:Elizabeth_Taylor,
ˆdbo:starring, dbr:Love_Is_Better_Than_Ever,
dbo:director, dbr:Stanley_Donen,
ˆdbo:director, dbr:Staircase_(film),
dbo:starring, dbr:Richard_Burton)

In this case, the paths pass through entities representing movies or film
directors, which are not discarded by the pathfinding step of the proposed
strategy. Note that, in our approach, the similarity between two entities is not
related to the classes or domains of the entities, but rather computed from the
feature sets of each entity, which consists of the set of nearby entities.

This behaviour is also illustrated when trying to discover the connectivity
between The Beatles and The Rolling Stones, as the following paths show:

– (dbr:The_Beatles,
ˆdbo:associatedBand, dbr:Brian_Jones,
ˆdbo:formerBandMember, dbr:The_Rolling_Stones)

– (dbr:The_Beatles,
ˆdbo:artist, dbr:Twist_and_Shout,

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 4. Discovering Relevant Paths between Entity Pairs 43

dbo:recordLabel, dbr:Atlantic_Records,
ˆdbo:recordLabel, dbr:The_Rolling_Stones)

To create different search strategies to discover relevant relationship
paths, we combine entity similarity and path ranking measures to be used
in the pathfinding and ranking processes, respectively. Therefore, we obtain
a family of 9 path search strategies, presented in Table 4.1, which we will
evaluate in Chapter 6. The second column of the table contains the acronym
used for each strategy hereafter in the document.

Table 4.1: Path Search Strategies

Acronym Name
1 J&I Jaccard index & PF-ITF
2 J&E Jaccard index & EBR
3 J&P Jaccard index & PMI
4 W&I WLM & PF-ITF
5 W&E WLM & EBR
6 W&P WLM & PMI
7 S&I SimRank & PF-ITF
8 S&E SimRank & EBR
9 S&P SimRank & PMI

4.2
The CoEPinKB Approach to the Entity Relatedness Problem

In this section, we describe an approach to efficiently discover relevant
paths up to a limited size between two entities in an RDF graph. The acronym
CoEPinKB comes from the main goal of this approach: to facilitate under-
standing the Connectivity of Entity Pairs in Knowledge Bases. Specifically,
in this first approach, we internally use SPARQL queries embedded in HTTP
requests through a SPARQL endpoint. This proposal is adapted from the al-
gorithm introduced by Herrera (2017). In this section, we also highlight the
main differences between the two approaches.

4.2.1
Finding Relationship Paths between Entities in a Knowledge Graph

The backward search heuristic uses breadth-first search (BFS) to explore
the neighbors of each target entity. Two BFS, which we call left and right, are
executed alternately to traverse the RDF graph. In each expansion step, the
BFS ignores entities with a high degree (i.e., entities with a large number of
incoming and outgoing links) and uses an entity similarity measure to prioritize

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 4. Discovering Relevant Paths between Entity Pairs 44

the entities with a higher similarity score to generate relevant relationship
paths. A path is generated if both BFS processes reach a common entity or a
target entity and the length of the path does not exceed a set limit. We break
backward search into two basic and independent steps: (1) expansion, and (2)
join of the paths.

Algorithm 1 describes the implementation of the backward search. The
input of the algorithm consists of a pair of entities, a and b, an integer l
representing a path length limit, an integer d representing an entity degree
limit, an activation function τ , and a real number λ ∈ [0, 1] defining an
expansion limit; and the output is a set P of paths between a and b.

Algorithm 1: backwardSearch
Input: a pair of entities a and b, a path length limit l, an entity

degree limit d, an activation function τ , and a real number
λ ∈ [0, 1] defining an expansion limit

Output: a set P of paths from a to b

1 side← 0, left← 0, right← 1;
2 Vleft ← {a}, Vright ← {b};
3 Pleft ← ∅, Pright ← ∅;
4 length← 0;
5 while length < l do
6 Vside, Pside ← expansion(Vside, Pside, d, τ, λ);
7 length← length+ 1;
8 side← length mod 2;
9 P ← join(Pleft, Pright, a, b);

10 return P

The value of variable side alternates between 0, indicating that the
expansion will be applied to the “left side” sub-paths, starting on a, and 1,
indicating that the expansion will be applied to the “right side” sub-paths,
starting on b. The values of variables left and right are therefore 0 and 1,
respectively.

The sets Vleft (i.e., V0) and Vright (i.e., V1) store the entities to expand in
each iteration from “left” and “right”, respectively. The undirected sub-paths
generated during the expansion of the entities (Line 6) are stored in main
memory in sets Pleft (i.e., P0, for the “left side” sub-paths) and Pright (i.e., P1,
for the “right side” sub-paths). The algorithm returns a set P of undirected
paths between a and b created if there are sub-paths in Pleft and Pright that
reach a common entity, or if sub-paths in the “left” (“right”) side reach b (a).

This approach for finding relationship paths is adapted from the algo-
rithm proposed by Herrera (2017). In that proposal, the join of sub-paths com-
ing from the left and the right (called intersection in that work) is executed

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 4. Discovering Relevant Paths between Entity Pairs 45

after each expansion iteration, which has the disadvantage that paths might be
generated repeatedly and must therefore be discarded. The author states that
in this way the paths can be consumed without waiting for the completion of
the backward search process, however, there is no guarantee that those first
generated paths will have greater relevance than the paths that will emerge
in later iterations. For this reason, our algorithm awaits the completion of the
expansion process and then generates paths with all the sub-paths that start
from a different side of the graph and reach a common node. Another differ-
ence with Herrera’s algorithm is the criterion for stopping the loop where the
expansion of the entities is performed. Since Herrera performs an unnecessary
additional iteration in its repeat-until control flow statement, the generated
sub-paths may result in paths of size greater than the user-defined limit and
should be discarded.

Algorithm 2 describes the expansion process, which is almost identical to
that proposed by Herrera (2017). For each entity w to expand, the algorithm
retrieves the neighbors of w (Line 3). If this set of neighbors, represented as
an adjacency list, is not already in memory, it retrieves it from the Web and
stores it in memory. An important remark is that, if w is not a target entity
(i.e., a or b) and w has more than the maximum number of links (bounded
entity degree criterion), then w will not be expanded and the paths that pass
beyond w will be discarded (Line 4).

Algorithm 2: expansion
Input: a set Vside of entities to expand, a set Pside of partial paths, a

maximum entity degree d, an activation function τ , and a real
number λ ∈ [0, 1] defining an expansion limit

Output: a set Vnew of activated neighbors of entities in Vside, and a
set Pside of partial paths

1 Vnew ← ∅;
2 for w ∈ Vside do
3 Nw ← neighborsOf(w);
4 if |Nw| <= d or w is a target entity then
5 Sw ← τ(w,Nw);
6 Truncate Sw to retain only the first λ% elements;
7 for ws ∈ Sw do
8 Append new sub-paths into Pside indexed by ws by

appending the edge from ws to w to sub-paths of Pside
indexed by w;

9 Append ws to Vnew;

10 return Vnew, Pside

Algorithm 2 also calls the activation function τ (Line 5) with w and

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 4. Discovering Relevant Paths between Entity Pairs 46

Nw, the list of neighbors of w, as input. The activation function τ implements
an entity similarity measure and it is performed in parallel on the list Nw

of neighbors to return a list Sw of neighbors similar to w. That is, the list
Nw is divided into smaller fragments that can be processed simultaneously by
different threads. The list Sw is ordered by highest similarity and only the first
λ percent of the elements of the list are considered (Line 6). For example, if
λ = 0.3, only the first 30% of the elements in the list are considered to extend
the sub-paths indexed by w in Pside (Lines 7-8). These new extended sub-paths
are then indexed by the activated neighbor ws of w. The activated entities are
included in set Vnew (Line 9) for later expansions. Finally, the sets Vnew and
Pside are returned by the algorithm (Line 10).

Algorithm 3 describes the join process, which generates undirected paths
from a to b through the function concat when two undirected sub-paths, one
coming from left and the other from the right, reach the same entity w (Lines
2-4). The Boolean expression “w ∈ Pleft” is true when there is a set of paths,
denoted Pleft[w], in Pleft that end on w. Likewise, “w ∈ Pright” is true when
there is a set of paths, denoted Pright[w], in Pright that start on w. Also, if a
path coming from left reaches the target entity (Lines 5-6), or a path coming
from right reaches the source entity (Lines 7-8), it is included in the set P of
the resulting paths.

Algorithm 3: join
Input: a set Pleft of partial paths from left, a set Pright of partial

paths from right, and a pair of entities a and b
Output: a set P of paths from a to b

1 P ← ∅, left← 0, right← 1;
2 for w ∈ Pleft do
3 if w ∈ Pright then
4 Append paths resulting from concat(Pleft[w], Pright[w]) to P ;

5 if b ∈ Pleft then
6 Append paths in Pleft[b] to P ;
7 if a ∈ Pright then
8 Append paths in Pright[a] to P ;
9 return P

The idea of this algorithm is implemented by Herrera (2017) under
the name of intersection. The main difference between the two proposals is
that Herrera (2017) goes through the list of all the entities visited during the
expansion process to later recover and join the sub-paths that reach the same
entity from the left and the right, while in our algorithm we eliminate that

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 4. Discovering Relevant Paths between Entity Pairs 47

additional loop. We simply verify that the entities that were reached through
the partial paths from the left side were also reached by partial paths from the
right, and then concatenate those paths.

4.2.2
Ranking Relationship Paths in a Knowledge Graph

The number of paths connecting two entities a and b in a knowledge base
can be very large. To help users understand the connectivity between that pair
of entities it is necessary to reduce the size of the resulting path set. In this
section, we discuss how to effectively select the most relevant relationship paths
between a pair of entities.

Specifically, given a relationship path ranking measure and a parameter
k, the relationship path ranking algorithm returns a ranked list of top-k most
relevant relationship paths based on the relationship path ranking measure.
Algorithm 4 shows the pseudocode of getRelevantPaths, which includes three
steps: (1) executing the backward search to find the relationship paths (using
the Algorithm 1), (2) executing the path ranking function to get an ordered
list of ranked paths, and (3) selecting the top-k most relevant paths.

Algorithm 4: getRelevantPaths
Input: a pair of entities a and b, a path length limit l, an entity

degree limit d, an activation function τ , a real number
λ ∈ [0, 1] defining an expansion limit, a path ranking function
γ, and a maximum number of paths k

Output: a list of the top-k relevant paths from a to b

1 P ← backwardSearch(a, b, l, d, τ, λ);
2 R← getPathsOrderedByScore(P, γ);
3 Truncate R to retain only the first k elements;
4 return R

The getPathsOrderedByScore function uses the path ranking function
γ, which implements some path ranking measure, to calculate the score of each
of the paths in the list P . This function runs in parallel to speed up the ranking
process. After calculating the score of each discovered path and ordering the
list of paths in descending order according to this score, we take the first k
elements and this result is the output of the algorithm.

4.3
The DCoEPinKB Approach to the Entity Relatedness Problem

In addition to the approach for discovering relevant paths between
two entities in an RDF graph on a single-machine configuration using the

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 4. Discovering Relevant Paths between Entity Pairs 48

data parallel paradigm, we also propose an approach that extends that
paradigm to the distributed case, to address the entity relatedness problem on
a distributed scenario. The acronym DCoEPinKB stands for a Distributed
way of understanding the Connectivity of Entity Pairs in Knowledge Bases.
Specifically, in this second approach, we use Spark in a local infrastructure
that could be replicated on a cluster.

Distributed data processing frameworks require data partitioning to har-
ness the full power of a distributed solution. Spark is not designed to perform
native RDF processing, but relational schemas can be used to represent RDF
data in an efficient and scalable way. Our approach uses the Statement Table
schema that directly maps RDF triples onto a table with three columns (sub-
ject, predicate, object), in which each tuple corresponds to an RDF statement.
In this way, it is possible to use all the power of Spark SQL and its data struc-
tures for distributed collections and take advantage of the efficient execution
of distributed and parallel operations such as map and reduce.

The strategy we propose to discover relevant paths between pairs of
entities in distributed RDF graphs is very similar to what we presented
previously for a single-machine configuration in the CoEPinKB approach.
Similarly, we use the backward search heuristic with activation criteria to find
the paths and path ranking measures to select the most relevant ones, however,
in this approach we execute some tasks over distributed collections of data in
a distributed way.

Algorithm 5 describes in pseudocode the implementation of the expansion
process for the DCoEPinKB approach. Note that this algorithm is very
similar to Algorithm 2, but, in this case, the request for the list of neighbors
of the entities that are waiting to be expanded is made using the map and
reduce operators, which allow distributed processing and can be performed
in parallel. Internally, the activation function τ also implements an entity
similarity measure using a combination of the map, filter, and sortBy operators
to perform similarity calculations in parallel over a distributed data collection.

First, we call the function neighborsOf within the map operation for
each of the entities in the set of entities to be expanded (Line 2) and then we
collect all these neighbors in the distributed data collection N by executing
the reduce operation (Line 3). We then use a parallel transformation like
filter to select exactly the neighbors of a given entity within this distributed
collection that contains all neighbors (Line 5). Unlike the expansion process
in CoEPinKB, in this new proposal we define an expansion limit that allows
selecting a percentage of the most similar entities in the list Sw of neighbors
similar to w or an absolute value of those most similar entities. That is, for

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 4. Discovering Relevant Paths between Entity Pairs 49

Algorithm 5: expansion (2)
Input: a set Vside of entities to expand, a set Pside of partial paths, a

maximum entity degree d, an activation function τ , and a real
number λ defining an expansion limit

Output: a set Vnew of activated neighbors of entities in Vside, and a
set Pside of partial paths

1 Vnew ← ∅;
2 N ← map(Vside, w => neighborsOf(w));
3 N ← reduce(N, union);
4 for w ∈ Vside do
5 Nw ← filter(N,w);
6 if |Nw| <= d or w is a target entity then
7 Sw ← τ(w,Nw);
8 Truncate Sw to satisfy the expansion limit criterion;
9 for ws ∈ Sw do

10 Append new sub-paths into Pside indexed by ws by
appending the edge from ws to w to sub-paths of Pside
indexed by w;

11 Append ws to Vnew;

12 return Vnew, Pside

example, 50% of the most similar entities or the top-10 most similar entities
can be expanded.

Similarly, the computation of the score of each of the paths found can
be carried out in a distributed manner using the map operation, as shown in
Algorithm 6. The path ranking function γ, which implements a specific path
ranking measure, is executed in parallel within the map operation (Line 1).

Algorithm 6: getPathsOrderedByScore
Input: a set P of paths from a to b, a path ranking function γ
Output: a list R of paths from a to b ordered descending by the score

1 R← map(P, path => (path, γ(path)));
2 R← sort(R, reverse);
3 return R

4.4
Chapter Conclusions

In this chapter, we presented a solution to the entity relatedness problem.
We combined entity similarity and path ranking measures to generate a family
of 9 path search strategies that receive as input a pair of target entities a and
b and output a ranked list of paths in an RDF graph G from a to b. Each path

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 4. Discovering Relevant Paths between Entity Pairs 50

search strategy in the family has two basic steps: (1) find a set of paths in G
from a to b such that each path satisfies a set of selection criteria; (2) rank
the paths found and select the top-k relevant ones. We proposed an approach
to address this problem in a single-machine configuration based on a data-
parallel paradigm, called CoEPinKB, and another approach that extends
that strategy for distributed data-parallel execution, called DCoEPinKB.

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

5
Implementation

This chapter presents the technical aspects of CoEPinKB and
DCoEPinKB, two frameworks that implement the approaches proposed
in Sections 4.2 and 4.3, respectively. First, we present in Section 5.1 an
overview of the general architecture of the frameworks. Then, we describe
in Sections 5.2.1 and 5.3.1 the specific architecture and workflow process
of each framework. We also report some details about the technologies and
programming paradigms used. Finally, in Sections 5.2.2 and 5.3.2 we present
the user interface of these frameworks that allow a user to submit an entity
pair and a search strategy for searching the relevant paths that link both
entities and return a list of ranked paths between this pair of entities.

5.1
Overview

Frameworks are semi-complete, reusable applications that can be spe-
cialized to produce custom applications for a specific domain. The flexibility
points of a framework, called hot spots, are the interfaces, abstract classes, or
methods that must be implemented to add the functionality specific to a prob-
lem (MARKIEWICZ; LUCENA, 2001). Some features of the framework are
not mutable and are known as frozen spots. These points of immutability com-
pose the kernel of the framework and are pieces of code already implemented
within the framework that call one or more hot spots.

Figure 5.1 shows the general architecture of the two proposed frame-
works. The architecture is divided into three main layers (i.e., presentation,
business, and data layers) and the cross-cutting layer that allows communica-
tion between them.

The main layers can be summarized as follows:

Presentation Layer: contains all of the classes responsible for presenting the
user interface to the end-user or sending the response to some external
system through a service interface.

Business Layer: contains all the logic that is required by the framework to
meet its functional requirements. The main components of the workflow
process, algorithms, and interfaces reside in this layer.

Data Layer: contains all the classes responsible for accessing, transforming,
and persisting data.

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 5. Implementation 52

Figure 5.1: General Architecture

The main benefit of developing a layered and modular architecture is the
ease of reusability and extensibility of our frameworks to produce new tools
that address the entity relatedness problem. The proposed frameworks have
some hot spots in the business and data layers for developers to easily add
new entity similarity and relationship path ranking measures to generate new
path search strategies, as well as to work with different knowledge bases.

5.2
The CoEPinKB Framework

The CoEPinKB1 framework was implemented in Java in conjunction
with other technologies, such as Apache Jena2, a free and open-source Java
framework for building Semantic Web and Linked Data applications, to
interact with the RDF data sources; Redis3, a popular distributed in-memory
key-value store (solid IT, 2020), as our persistent cache; and the Jedis4 library,
which allowed us to interact with a Redis instance from our Java application.

1The source code of CoEPinKB is available at https://bitbucket.org/guillot/coepinkb/
2https://jena.apache.org/
3https://redis.io/
4https://github.com/redis/jedis

https://bitbucket.org/guillot/dcoepinkb/
https://jena.apache.org/
https://redis.io/
https://github.com/redis/jedis
DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 5. Implementation 53

In this section, we present the architecture, workflow, and user interface of
CoEPinKB, as well as some details of the implementation that allowed us to
parallelize certain computations.

5.2.1
Architecture

As we described earlier in Section 4.2, our approach to address the entity
relatedness problem is to apply a two-step strategy, and each of these two
sequential phases corresponds to two of the main components of CoEPinKB:
the Backward Search component, which executes a breadth-first search
starting from each input entity and expanding similar entities to find the
most relevant relationship paths; and the Relationship Path Ranking
component, which ranks the resulting paths of the previous step. A third
component, called SPARQL Query Executor, implements the execution
of SPARQL queries to communicate with a SPARQL endpoint and to save the
result of those queries in a persistent cache. The first two components belong
to the business layer, while the last one belongs to the data layer. Figure 5.2
shows an overview of the architecture of the CoEPinKB framework and its
workflow process.

Figure 5.2: CoEPinKB Architecture & Workflow

The workflow process in CoEPinKB goes as follows:

1. The CoEPinKB framework takes as input a pair of entities and a search
strategy. A search strategy consists of an entity similarity measure that
will be used by the backward search algorithm as the activation function
to decide when to expand some neighbor of an entity or not, and a
relationship path ranking measure to select the top-k most relevant paths
between the two entities provided.

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 5. Implementation 54

2. The Backward Search component communicates with the SPARQL
Query Executor component requesting the required data to execute
the backward search algorithm.

3. The SPARQL Query Executor component tries to get the requested
data from the persistent cache.

4. If the requested data is not available in the persistent cache (Step 3),
then the SPARQL Query Executor component gets the data directly
from the SPARQL Endpoint through SPARQL queries, and stores it in
the persistent cache to speed up future searches.

5. The SPARQL Query Executor component sends the requested data
to the Backward Search component. (Steps 2-5 will repeat until the
backward search algorithm completes.)

6. The Backward Search component sends a list of relationship paths
between the pair of entities to the Relationship Path Ranking
component.

7. Similarly to the previous phase, the Relationship Path Ranking
component communicates with the SPARQL Query Executor re-
questing the required data to execute the path ranking algorithm.

8. The SPARQL Query Executor component tries to get the requested
data from the persistent cache.

9. If the requested data is not available in the persistent cache, then the
SPARQL Query Executor component gets the data directly from
the SPARQL Endpoint through SPARQL queries, and stores it in the
persistent cache to speed up future queries.

10. The SPARQL Query Executor component sends the requested data
to the Backward Search component. (Steps 7-10 will repeat until the
path ranking algorithm completes.)

11. Finally, the Relationship Path Ranking component sends the list of
ranked paths to the user through the user interface.

There are two key hot spots in the CoEPinKB framework –the activa-
tion function, implementing the entity similarity measure, and the path ranking
measure– which are the core of the Backward Search and Relationship
Path Ranking components. These components were designed using an ar-
chitectural pattern based on interfaces, which increases the extensibility of

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 5. Implementation 55

the framework by making it easier to add new entity similarity measures and
relationship path ranking measures.

The backward search algorithm calls the method getSimilarity from a
class that implements the interface IEntitySimilarityMeasure. Likewise, the
path ranking process executes the method getPathsOrderedByScore from a
class that implements the interface IRelationshipPathRankingMeasure. As
illustrated in Figure 5.2, the current version of CoEPinKB implements three
entity similarity measures (i.e., Jaccard index, WLM, and SimRank) and
three relationship path ranking measures (i.e., PF-ITF, EBR, and PMI).

At the data layer, the framework has the SPARQL Query Executor
component that uses Apache Jena’s ARQ API to interact with RDF datasets
through their SPARQL endpoints. In this way, local data availability and
complex data processing infrastructure are not required. Data processing is
reduced to evaluating a set of queries through the SPARQL endpoint, as well
as locally executing some computations on the results of those queries.

Local data are optionally required to be used as a cache to speed up
queries. For this, the framework includes a persistent cache to store the result
of the SPARQL queries executed during the expansion of the entities in the
RDF graph. The main reason for this decision is that the backward search and
the path ranking algorithms require executing a large number of queries (quite
possibly over the network), which can negatively affect the overall performance
of the framework. We use Redis to implement the persistent cache and, since
the data in the RDF knowledge base can evolve, we define an expiration time
equivalent to one week for data stored in the cache. The source code below
shows an example of the use of key expiration times in Redis when storing the
adjacency list of an entity (i.e., the neighbors of the entity).

Code 2: Using key expiration time for data in the cache

1 private final int REDIS_KEY_EXPIRATION_TIME = 604800; // 1 week

2 ...

3 public ResultSetMem getNeighborsOfResource (String iri) {

4 String key = String . format ("%s: neighborsOf :%s", paramHash , iri);

5 if (jedis.get(key) == null) {

6 ResultSetMem neighbors = new ResultSetMem (

getOutgoingLinksFromResource (iri),

getIncomingLinksToResource (iri));

7 jedis.set(key , ResultSetFormatter . asXMLString (neighbors));

8 jedis. expire (key , REDIS_KEY_EXPIRATION_TIME);

9 return neighbors ;

10 }

11 return new ResultSetMem (ResultSetFactory . fromXML (jedis.get(key)));

12 }

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 5. Implementation 56

To improve performance, in addition to the persistent cache, we use
concurrent programming in the implementation of the entity similarity and
path ranking measures through the fork/join framework in Java. Following
a divide and conquer approach, we split intensive tasks, such as computing
the similarity between an entity and its neighbors, into smaller independent
subtasks that can be performed in parallel to maximize the use of multi-core
processors, as shown in Figure 5.3.

Figure 5.3: Fork/Join Example

The source code below shows an example of the use of the fork/join
framework to compute the Jaccard index. The same logic applies to
computing the entity similarity using the other measures.

Code 3: Using the fork/join framework to compute the Jaccard index

1 protected List <Similarity > compute () {

2 List <Similarity > result = new ArrayList <>();

3 if (neighbors .size () < THRESHOLD)

4 for (QuerySolution neighbor : neighbors)

5 result .add(getSimilarity (entity , neighbor));

6 else {

7 int middle = neighbors .size () / 2;

8 List < QuerySolution > l1 = neighbors . subList (0, middle);

9 List < QuerySolution > l2 = neighbors . subList (middle , neighbors .

size ());

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 5. Implementation 57

10 JaccardIndexTask task1 = new JaccardIndexTask (entity , l1);

11 JaccardIndexTask task2 = new JaccardIndexTask (entity , l2);

12 task1.fork ();

13 result . addAll (task2. compute ());

14 result . addAll (task1.join ());

15 }

16 return result ;

17 }

In this example, if the task of computing the similarity between an entity
and its neighbors is simple enough (i.e., neighbors.size() is lower than a
specified threshold), then the task is executed asynchronously. Otherwise, the
list of neighbors is divided into sublists (the task is divided into subtasks) and
the results of all subtasks are recursively joined into a single result.

5.2.2
User Interface

A framework that facilitates the understanding of the connectivity be-
tween pairs of entities in knowledge bases using different search strategies
requires a simple and at the same time highly configurable interface in terms
of the parameters that make up a search strategy. The CoEPinKB inter-
face5 was implemented using Java servlets and JSP technologies. Figure 5.4
shows an example of the presentation of the results when the input entities
are dbr:Michael_Jackson and dbr:Whitney_Houston, and the entity simi-
larity and relationship path ranking measures are Jaccard index and EBR,
respectively.

The user also specifies other parameters through the interface such as
the maximum path length between the entities (set to 4 by default, but the
user can set this parameter to search for shorter/longer paths); the maximum
entity degree, to discard entities with a high number of neighbors during the
expansion; a list of properties irrelevant when building the relationship paths;
an entity prefix, to expand only to resources that are considered entities;
an expansion limit λ ∈ [0, 1], understood as a percentage, that limits the
expansion process; and the maximum number of paths that the user wants.

The results are presented using a table layout and the relevant paths are
ordered in descending order by the score. The interface also allows the user to
navigate to the page of the resource –subject, predicate, or object– by clicking
on the corresponding URI.

CoEPinKB also provides a RESTful API, so the user can submit a
GET request that returns a JSON document containing the corresponding list

5http://semanticweb.inf.puc-rio.br:8080/CoEPinKB/

http://semanticweb.inf.puc-rio.br:8080/CoEPinKB/
DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 5. Implementation 58

Figure 5.4: CoEPinKB User Interface

of relevant paths between the two entities. This form of interaction with the
framework makes it easy to execute batch searches and perform experiments.

5.3
The DCoEPinKB Framework

The DCoEPinKB6 framework was implemented in Scala with the help
of some other technologies, such as Apache Spark; Redis, as our persistent
cache; and the scala-redis7 library, for connecting to a Redis server. In
this section, we describe the architecture and user interface of DCoEPinKB
and mainly discuss the characteristics that differ between this framework and
CoEPinKB. We do not delve so deeply into those characteristics that are
similar in the two frameworks and that we already discussed in Section 5.2.1.

5.3.1
Architecture

The acronym DCoEPinKB stands for a Distributed way of under-
standing the Connectivity of Entity Pairs in Knowledge Bases. As we men-
tioned earlier in Section 4.3, the DCoEPinKB approach is very similar to the

6The source code of DCoEPinKB is available at https://bitbucket.org/guillot/dcoepin-
kb/

7https://github.com/debasishg/scala-redis

https://bitbucket.org/guillot/dcoepinkb/
https://bitbucket.org/guillot/dcoepinkb/
https://github.com/debasishg/scala-redis
DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 5. Implementation 59

CoEPinKB approach, but this new framework addresses the entity related-
ness problem in a distributed manner using Apache Spark (ZAHARIA et al.,
2010) for large-scale data processing.

Spark has a programming model similar to MapReduce but extends it
with a data-sharing abstraction called Resilient Distributed Datasets, or RDDs.
Under the hood, these RDDs are stored in partitions on different cluster nodes.
A partition is the main unit of parallelism in Spark and basically, it is a logical
chunk of a large distributed dataset. It provides the possibility to distribute the
work across the cluster, divide the task into smaller parts and reduce memory
requirements for each node.

The DCoEPinKB framework, unlike CoEPinKB, has a distributed
local infrastructure to store the knowledge base on which the user intends to
address the entity relatedness problem. Figure 5.5 shows an overview of the
architecture of DCoEPinKB.

Figure 5.5: DCoEPinKB Architecture

Spark is not designed to perform native RDF processing. However,
relational schemas such as the Statement Table, the Property Table, and
the Vertical Partitioning schemas can be used to represent RDF data. The
Data Preprocessor component transforms the source files of an RDF
knowledge base into files in the Parquet format using some RDF relational
schema, partitions these new files into fragments, and distributes the fragments

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 5. Implementation 60

over a cluster. Apache Parquet8 is a columnar storage format that provides
optimizations to speed up queries and is a much more efficient file format than
CSV or JSON, supported by many data processing frameworks. It provides
flexible and efficient data compression and encoding schemes with enhanced
performance. As the data type for each column is quite similar –we store strings
that represent the resources identifiers– the compression of each column is
straightforward.

At the data layer, the framework also has the Spark Query Executor
component that interacts with DataFrames that represent views of RDF
datasets stored in the distributed file system as Parquet files. Based on
what was developed for the SPARQL Query Executor component in
CoEPinKB, we made translations of implemented SPARQL queries to Spark
SQL queries. Spark SQL is one of the most popular modules of Spark, targeted
for processing structured data, using the Datasets and DataFrames data
abstractions, and provides support for reading and writing Parquet files.

DCoEPinKB also uses Redis to include a persistent cache to store the
result of the queries executed during the expansion of the entities in the RDF
graph. We designed the structure of the keys in the cache in a way that
facilitates partitioning data on a cluster of Redis nodes using a concept called
hash tags9. So, we can use these hash tags to force certain keys to be stored in
the same hash slot.

After the data preprocessing stage and with the RDF graph ready
to be queried, the two-step strategy to search for the most relevant paths
between a pair of entities can start. First, the user enters a pair of entities
and specifies a path search strategy by selecting an entity similarity measure,
together with an expansion limit, and a path ranking measure. The user also
specifies other parameters such as the maximum path length between the
entities; the maximum entity degree, to discard entities with a high number of
neighbors during the expansion; a list of properties irrelevant to the analysis
when building the relationship paths; and an entity prefix, to expand only to
resources that are considered entities.

During the first phase of the execution of DCoEPinKB, the Backward
Search component communicates with the Spark Query Executor com-
ponent requesting the required data to execute the backward search algorithm.
This last component gets the requested data using two different approaches:
(i) first, it tries to get the data from the persistent cache; (ii) if the requested
data is not available then it gets the data directly from the Dataframe object

8https://parquet.apache.org/
9https://redis.io/topics/cluster-spec

https://parquet.apache.org/
https://redis.io/topics/cluster-spec
DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 5. Implementation 61

in Spark that represents a view of the data available in the Parquet file, and
stores it in the persistent cache to speed up future searches.

After the backward search algorithm finishes, the Backward Search
component sends a list of relationship paths between the pair of entities
to the Relationship Path Ranking component. Then, the second phase
begins. Similar to the previous phase, the Relationship Path Ranking
component communicates with the Spark Query Executor component
requesting the required data to execute the path ranking algorithm. After the
algorithm finishes, the Relationship Path Ranking component sends the
list of ranked paths to the user through the user interface.

Similar to CoEPinKB, there are two main hot spots in the
DCoEPinKB framework: the activation function, implementing the en-
tity similarity measure, and the path ranking measure. The Backward
Search and the Relationship Path Ranking components were designed
using an architectural pattern based on interfaces, specifically using traits
in Scala. As illustrated in Figure 5.5, the current version of DCoEPinKB
implements two entity similarity measures (i.e., Jaccard index and WLM)
and three relationship path ranking measures (i.e., PF-ITF, EBR, and PMI).

5.3.2
User Interface

Unlike the CoEPinKB framework, this first version of DCoEPinKB
runs in batch mode and the user interacts with the framework using the
console. A goal for future work is to improve the framework to run in interactive
mode with a graphical user interface, probably using Apache Livy10. Apache
Livy is a service that enables easy interaction with a Spark cluster over a
REST interface and simplifies the interaction between Spark and application
servers, thus enabling the use of Spark for interactive web/mobile applications.
Currently, the user creates a simple text file that contains the input parameters
of the algorithm and that the framework uses to execute the search strategy.
The results are then returned in CSV files.

5.4
Chapter Conclusions

In this chapter, we presented the architecture, the interface, and the
most important implementation details of the CoEPinKB and DCoEPinKB
frameworks. The architectures of these frameworks correspond to the ap-
proaches proposed in Sections 4.2 and 4.3 to address the entity relatedness

10https://livy.apache.org/

https://livy.apache.org/
DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 5. Implementation 62

problem. The corresponding user interfaces allow the user to combine entity
similarity and path ranking measures to execute different path search strategies
between a pair of entities in a knowledge base.

Table 5.1 compares the CoEPinKB and DCoEPinKB frameworks
with related systems introduced in Chapter 3 in terms of knowledge graphs
supported, types of output, availability of filtering capabilities, the requirement
of local data, and architecture.

Table 5.1: Comparison of the proposed frameworks with related systems

System Knowledge
Graph Output Filtering

Capabilities
Local
Data Architecture

RelFinder DBpedia Graph No Yes Centralized
REX Yahoo! Graph No Yes Centralized

Explass DBpedia Paths Yes Yes Centralized
RECAP Any Graph, Paths Yes No Centralized

DBpedia Profiler DBpedia Graph, Paths No Yes Centralized
CoEPinKB Any Paths Yes No* Centralized

DCoEPinKB Any Paths Yes Yes Cluster
* Local data is only necessary to be used as a cache to speed up queries, but it is not mandatory.

CoEPinKB and DCoEPinKB differ from most related systems in the
following major aspects. As for the RDF knowledge base, only RECAP and
our frameworks are knowledge base independent, that is, these approaches are
flexible enough to be used with different knowledge bases; CoEPinKB, as
RECAP, only requires the availability of a remote SPARQL query endpoint,
while DCoEPinKB pre-processes any RDF dataset and transforms it into
Parquet files that can be later consumed by the framework. Regarding the
local data requirement, CoEPinKB and RECAP do not assume local data
availability or any data pre-processing. However, by using a local cache,
CoEPinKB can speed up the execution of the queries. Finally, DCoEPinKB
is the only approach that addresses the entity relatedness problem in a
distributed manner.

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

6
Evaluation

This chapter presents an evaluation of the path search strategies proposed
in Chapter 4 using the CoEPinKB and DCoEPinKB frameworks over the
DBpedia. First, we describe the experimental setup adopted in the experi-
ments: the hardware and software configurations, the datasets, and parameter
settings. Then, we execute the experiments over two entertainment domains
(i.e., music and movies) over real data available in the DBpedia. We evaluate
the performance, in terms of average execution time, of the two frameworks,
and the ranking accuracy of the path search strategies for different expansion
limit values in DCoEPinKB. The evaluation of the DCoEPinKB framework
required the use of novel ground truth, In this chapter, we also describe how we
created this ground truth. Finally, we present the results of the experiments,
which provide insights into the performance of the path search strategies.

6.1
CoEPinKB Evaluation

Herrera (2017) executed some experiments to evaluate the family of nine
path search strategies shown in Table 4.1 against a ground truth (HER-
RERA et al., 2017) from the music and movies domains, and a baseline,
RECAP (PIRRò, 2015). The pairwise comparison method was used to iden-
tify the path search strategy that returns the best ranking compared with the
ground truth, and to compare the best strategy with the baseline. Herrera
(2017) did not include experiments to evaluate the performance of all these
strategies concerning execution time. In this section, we present a performance
evaluation of these different strategies using CoEPinKB.

6.1.1
Experimental Setup

This section describes the experimental environment, hardware and
software components, dataset, and parameter settings for experimenting with
the CoEPinKB framework.

6.1.1.1
Hardware and Software Configurations

All the experiments were performed on a Linux server with Ubuntu
16.04.7 LTS system, an Intel® Core™ i7-5820K CPU @ 3.30GHz, and 6GB

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 6. Evaluation 64

of memory dedicated to Java applications. We used Java v11.0.10, Tomcat
v.9.0.36, and Redis v3.0.6.

6.1.1.2
Dataset

The experiments were carried out over DBpedia (LEHMANN et al.,
2015), a well-known large public knowledge base which data is extracted from
Wikipedia infoboxes. DBpedia constitutes the main resource of Linked Open
Data on the Web containing more than 228 million entities to date1. The
CoEPinKB framework queries the DBpedia dataset online via the public
OpenLink Virtuoso SPARQL protocol endpoint at http://dbpedia.org/sparql.
OpenLink Virtuoso serves as both the back-end database SPARQL query
engine and the front-end HTTP/SPARQL server with an Nginx overlay
primarily to cache results for each submitted query string. This public endpoint
does not include all available DBpedia datasets2. When the experiments were
performed, this dataset contained just over 400 million triples.

6.1.1.3
Target Entity Pairs

We selected 10 entity pairs from the Entity Relatedness Test
Dataset (HERRERA et al., 2017), 5 entity pairs from the music domain,
and 5 from the movies domain. Table 6.1 shows the selected entity pairs from
both domains.

Table 6.1: Entity pairs selected for experimenting with CoEPinKB

Entity Pair (music domain) # Entity Pair (movies domain)

1 dbr:Michael_Jackson 6 dbr:Elizabeth_Taylor
dbr:Whitney_Houston dbr:Richard_Burton

2 dbr:The_Beatles 7 dbr:Cary_Grant
dbr:The_Rolling_Stones dbr:Katharine_Hepburn

3 dbr:Elton_John 8 dbr:Laurence_Olivier
dbr:George_Michael dbr:Ralph_Richardson

4 dbr:Led_Zeppelin 9 dbr:Errol_Flynn
dbr:The_Who dbr:Olivia_de_Havilland

5 dbr:Pink_Floyd 10 dbr:William_Powell
dbr:David_Gilmour dbr:Myrna_Loy

1https://www.dbpedia.org/
2https://www.dbpedia.org/resources/sparql/

http://dbpedia.org/sparql
https://www.dbpedia.org/
https://www.dbpedia.org/resources/sparql/
DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 6. Evaluation 65

6.1.1.4
Path Search Strategies

Using CoEPinKB, we proceeded to evaluate the family of nine path
search strategies obtained by combining three entity similarity measures
(Jaccard index, WLM, and SimRank) and three path ranking measures
(PF-ITF, EBR, and PMI), as shown in Table 4.1.

6.1.1.5
Configuration parameters

We configured the experiments using the following parameters:

Maximum path length between the entities: set to 4, since this was
the limit adopted by previous works, as REX (FANG et al., 2011),
EXPLASS (CHENG; ZHANG; QU, 2014), RECAP (PIRRò, 2015),
DBpedia Profiler (HERRERA et al., 2016), and the experiments
in Herrera (2017).

Maximum entity degree: set to 200. This degree limit was deduced from
DBpedia statistics (HERRERA, 2017), which indicate that 90% of the
entities have less than 200 links. This kind of criterion is applied together
with entity similarity during the entity expansion process because, as
in Moore, Steinke & Tresp (2012), it can be assumed that nodes with
a high degree often carry very unspecific information that negatively
influences the path search process.

Expansion limit: set to λ = 0.5. So, the adjacency list of each entity is
sorted by similarity, and only the top 50% of the entities are considered,
independently of the size of the list and the similarity scores. We
considered 50% of the list because it is a moderate factor to maintain
the connectivity between entities and propagate the similarity score in
the graph (COHEN, 2010).

Set of ignored properties: a total of 10 properties were ignored during the
exploration of the knowledge base. These properties are: purl:subject,
rdfs:seeAlso, rdf:type, dbo:type, dbo:wikiPageRedirects,
dbo:wikiPageDisambiguates, dbp:aux, dbp:name, dbp:title,
dbp:wordnet_type, and dbp:governmentType. This is justified by
the fact that these properties describe relationships between entities
that are irrelevant for our analysis.

For instance, if we considered properties like purl:subject and
rdf:type, we would have to deal with too many paths that are of

http://purl.org/dc/terms/subject
https://www.w3.org/TR/rdf-schema/#ch_seealso
https://www.w3.org/TR/rdf-schema/#ch_type
http://dbpedia.org/ontology/type
http://dbpedia.org/ontology/wikiPageRedirects
http://dbpedia.org/ontology/wikiPageDisambiguates
http://dbpedia.org/property/aux
http://dbpedia.org/property/name
http://dbpedia.org/property/title
http://dbpedia.org/property/wordnet_type
http://dbpedia.org/property/governmentType
DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 6. Evaluation 66

little interest to us. There are more than 225 statements in which
the subject is the entity dbr:Michael_Jackson and the predicate is
one of these properties. The property dbo:wikiPageRedirects is also
present in many statements (almost 70 times in the case that the entity
dbr:Michael_Jackson is the object) that mainly link entities with ty-
pographical errors or other types of minor errors with the corresponding
correct entity.

Entity prefix: set to http://dbpedia.org/resource. This prefix was used
to expand only to resources that are considered entities of our interest.

Maximum number of paths: set to 50, because this value suffices to ex-
plore the connectivity between the entities, as reported in Fang et al.
(2011), Cheng, Zhang & Qu (2014), Hulpuş, Prangnawarat & Hayes
(2015), and Pirrò (2015). Also, this value was used in the experiments
performed by Herrera (2017) and this is the exact number of paths for
each entity pair in the ground truth proposed by Herrera et al. (2017).

6.1.2
Experiment 1 – Performance Evaluation

This experiment aims to evaluate the performance, in terms of average
execution time, of the nine different path search strategies shown in Table 4.1.
For each pair of entities in each domain, we searched the top-k relationship
paths between them six times (we excluded the first cold start run time,
to avoid the warm-up bias) and calculated the average time of the last five
executions of the program. Figure 6.1 shows the performance of the path search
strategies in both domains.

J&I J&E J&P W&I W&E W&P S&I S&E S&P
0

100

200

300

·103

Av
er
ag
e
tim

e
(m

s) Movies domain
Music domain

Figure 6.1: Average time of path search strategies using CoEPinKB

http://dbpedia.org/resource
DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 6. Evaluation 67

The results showed that strategies that use SimRank have a poor
performance. They took, on average, 116,070 ms and 266,838 ms to execute
the pathfinding process in the movies and music domains, respectively, that
is, almost 2 minutes for the movies domain, and almost 4 minutes and a half
for the music domain. This is due to the recursive definition of SimRank.
As we mentioned in Section 2.2, there are many studies to speed up its
computations (LIZORKIN; VELIKHOV, 2008; LI et al., 2010; LI et al., 2020;
HAMEDANI; KIM, 2021). However, as these strategies were not shown to be
successful for finding relevant relationship paths in the experiments executed
by Herrera (2017), we focused on the performance analysis of the rest of the
strategies, leaving aside those that use SimRank.

Figure 6.2 shows the performance of the path search strategies in the
music and movies domains, splitting the average execution times of each
strategy into the average time spent searching and ranking the relationship
paths, and excluding the strategies that use SimRank.

J&I J&E J&P W&I W&E W&P
0

2

4

6

8

10

12

14

16

18

20
·103

Av
er
ag
e
tim

e
(m

s)

Average time for ranking (Music)
Average time for searching (Music)
Average time for ranking (Movies)
Average time for searching (Movies)

Figure 6.2: Average execution times of path search strategies using
CoEPinKB in each domain (excluding S&I, S&E and S&P strategies)

We notice that for the entity pairs in the music domain the average
execution time of all strategies is higher than the average execution time for
the entity pairs in the movies domain. This is because the entity pairs in
the music domain represent “more popular” subjects within DBpedia than
those in the movies domain, which means a larger number of links with other
entities, which in turn dramatically impacts the performance of graph traversal
algorithms such as backward search and the implemented entity similarity

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 6. Evaluation 68

and path ranking measures. Overall, in both domains, the best path search
strategies in terms of performance are J&E (2,558 ms), J&I (3,049 ms), and
J&P (3,241 ms). In the movies domain, these strategies achieved the following
average execution times: J&E (976 ms), J&I (1,130 ms), and J&P (1,184 ms).
While in the music domain the behavior of the average execution times was:
J&E (4,139 ms), J&I (4,968 ms), and J&P (5,298 ms).

The experiments reflect the particularity of how each of the entity
similarity and path ranking measures is calculated. The average times for
the strategies using the Jaccard index or WLM were quite good and very
similar when compared to those using SimRank because both entity similarity
measures use the feature sets Ad and Bd, which are stored and quickly accessed
in our persistent cache. In our experiments, the depth d at which the graph is
traversed to acquire features of an entity is set to 2. However, the strategies
that use WLM take longer than those that use the Jaccard index because
during the process of finding paths they expand the graph through connections
that end up generating a larger number of paths in most cases, which affects
the performance of the searching and ranking algorithms. On average, the
strategies that use the Jaccard index found 132 paths in the movies domain
and 920 paths in the music domain, while the strategies that use WLM found
428 and 2,780 paths in the movies and music domain, respectively.

Figure 6.3 shows the number of paths found for each entity pair using
the Jaccard index and WLM. Recall that the first 5 entity pairs (EP1-EP5)
belong to the music domain, while the rest (EP6-EP10) belong to the movies
domain.

EP
1

EP
2

EP
3

EP
4

EP
5

EP
6

EP
7

EP
8

EP
9

EP
10

0

1,000

2,000

3,000

4,000

Pa
th
s
fo
un

d

Jaccard index
WLM

Figure 6.3: Number of paths found for each entity pair using Jaccard index
and WLM as entity similarity measures

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 6. Evaluation 69

As for the path ranking measures, EBR executes fewer calculations than
PF-ITF and PMI (see Section 2.3). For this reason, the average time for ranking
paths using EBR is better than the average time using PF-ITF and PMI, as
confirmed in the evaluation of the different strategies.

The experiments in Herrera (2017) indicated that J&E andW&E perform
better than the other strategies as far as finding the relevant paths between a
pair of entities in the music and movies domains and that the J&E strategy
performs better than the baselines. Concerning execution time, the results of
this thesis indicated that the most effective strategy is also the fastest one.
Therefore, we may conclude that J&E is the fastest strategy and performs
better than the other strategies.

6.2
DCoEPinKB Evaluation

We implemented DCoEPinKB in Scala in conjunction with Apache
Spark, as mentioned in Section 5.3, and conducted experiments using real-
world datasets to evaluate its efficiency and effectiveness. In this section, we
discuss the setup and results of our experiments.

6.2.1
Experimental Setup

This section describes the experimental environment, hardware and
software components, datasets, and parameter settings for experimenting with
the DCoEPinKB framework.

6.2.1.1
Hardware and Software Configurations

All the experiments were performed on a Linux server with Ubuntu
16.04.7 LTS system, an Intel® Core™ i7-5820K CPU @ 3.30GHz, and 16GB
of memory dedicated to Spark applications. We used Spark v2.4.3 in the
Spark Standalone Mode and Redis v3.0.6. We experimented with a proof-
of-concept standalone setup, leaving to future work testing the framework in a
fully distributed environment. However, although the experiments were carried
out on a single-machine configuration, the methods used for transforming and
partitioning the source datasets in multiple Parquet files, which we describe in
the next sections, as well as the data structures used for representing data and
the subsequent execution of our algorithms for finding relevant paths between
entity pairs, are the same regardless of the architecture used.

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 6. Evaluation 70

6.2.1.2
Datasets

We extracted and used two publicly available subsets of the English
DBpedia corpus to create the knowledge bases used in the experiments. The
first source dataset consists of the cleaned version of high-quality statements
with IRI object values extracted by the mappings extraction from Wikipedia
Infoboxes3, and the second dataset consists of data from Wikipedia Infoboxes,
as it is, with some smart automatic parsing; this second dataset4 has better
fact coverage than the first one but has less consistency.

Using the Data Preprocessor component available in DCoEPinKB,
we transformed these source datasets from the Turtle format to two new
datasets in the Parquet format that we called DBpedia21M and DBpe-
dia45M, respectively. DBpedia21M contains the statements in the first
source dataset, and DBpedia45M contains the union of the triples in both
source datasets. In both cases, we excluded statements involving literals or
blank nodes. For each dataset, Table 6.2 shows: the total number of triples,
the number of different subjects, properties, and objects; the average out and
in node degrees; the size of the datasets source file in Turtle format; and the
size of the datasets files after preprocessing and transforming the source files
to files in Parquet format.

Table 6.2: Datasets for experimenting with DCoEPinKB

Dataset DBpedia21M DBpedia45M
Total number of triples 21,447,757 45,458,494

Number of subjects 5,422,448 6,143,627
Number of properties 632 13,691

Number of objects 4,605,723 6,035,047
Average outdegree 3.96 7.40
Average indegree 4.66 7.53

Turtle Size 3.1 GB 16.2 GB
Parquet Size 673 MB 1.5 GB

6.2.1.3
Target Entity Pairs

We selected 20 entity pairs from the Entity Relatedness Test
Dataset (HERRERA et al., 2017), 10 entity pairs from the music domain,
and 10 from the movies domain. We selected the same 10 entity pairs that

3https://downloads.dbpedia.org/repo/dbpedia/mappings/mappingbased-
objects/2021.03.01/mappingbased-objects_lang=en.ttl.bz2

4https://downloads.dbpedia.org/repo/dbpedia/generic/infobox-
properties/2021.03.01/infobox-properties_lang=en.ttl.bz2

https://downloads.dbpedia.org/repo/dbpedia/mappings/mappingbased-objects/2021.03.01/mappingbased-objects_lang=en.ttl.bz2
https://downloads.dbpedia.org/repo/dbpedia/mappings/mappingbased-objects/2021.03.01/mappingbased-objects_lang=en.ttl.bz2
https://downloads.dbpedia.org/repo/dbpedia/generic/infobox-properties/2021.03.01/infobox-properties_lang=en.ttl.bz2
https://downloads.dbpedia.org/repo/dbpedia/generic/infobox-properties/2021.03.01/infobox-properties_lang=en.ttl.bz2
DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 6. Evaluation 71

were used in the experimentation with CoEPinKB, and 10 more entity pairs.
Table 6.3 shows the selected entity pairs and the degree of each entity in
the datasets used for experimentation. Observe that the entities from the
music domain have a higher degree than the entities from the movies domain,
which affects the performance of the path search strategies, as discussed in
Experiment 2 reported in Section 6.2.2.

Table 6.3: Entity pairs selected for experimenting with DCoEPinKB
Music domain Movies domain

EP Entity Degree in
DBpedia21M

Degree in
DBpedia45M EP Entity Degree in

DBpedia21M
Degree in

DBpedia45M
dbr:Michael_Jackson 442 857 dbr:Elizabeth_Taylor 83 1501 dbr:Whitney_Houston 189 362 11 dbr:Richard_Burton 79 139
dbr:The_Beatles 441 980 dbr:Cary_Grant 83 1532 dbr:The_Rolling_Stones 353 769 12 dbr:Katharine_Hepburn 70 126
dbr:Elton_John 415 945 dbr:Laurence_Olivier 96 1703 dbr:George_Michael 192 402 13 dbr:Ralph_Richardson 55 107
dbr:Led_Zeppelin 135 316 dbr:Errol_Flynn 83 1494 dbr:The_Who 277 550 14 dbr:Olivia_de_Havilland 69 109
dbr:Pink_Floyd 303 560 dbr:William_Powell 96 1745 dbr:David_Gilmour 187 303 15 dbr:Myrna_Loy 105 189
dbr:U2 314 595 dbr:James_Stewart 103 1906 dbr:R.E.M. 250 450 16 dbr:Henry_Fonda 122 220
dbr:Metallica 188 353 dbr:Paul_Newman 99 1757 dbr:Anthrax 129 219 17 dbr:Joanne_Woodward 48 89
dbr:Rihanna 224 446 dbr:Bette_Davis 110 2078 dbr:Nicki_Minaj 261 519 18 dbr:Joan_Crawford 103 197
dbr:Velvet_Revolver 84 117 dbr:John_Wayne 181 2959 dbr:Guns_N’_Roses 259 392 19 dbr:Kirk_Douglas 104 190
dbr:Bob_Dylan 649 1663 dbr:Charlie_Chaplin 184 39510 dbr:The_Band 124 245 20 dbr:Frank_D._Williams 57 109

Average 271 552 Average 97 177
Max 649 1663 Max 184 395
Min 84 117 Min 48 89

Standard Deviation 136,97 353,37 Standard Deviation 35,39 70,02

6.2.1.4
Data Storage and Partitioning

We used the RDF relational schema known as Statement Table to log-
ically represent the datasets. This schema directly maps RDF data onto a
table with three columns (subject, predicate, object), in which each tuple cor-
responds to an RDF statement. Other well-known schemes, such as Property
Table and Vertical Partitioning, are not suitable due to the type of queries
that our framework frequently performs, mainly one-step queries at a time
(from subject to object, or vice versa), and the particularities of the graphs
used, which have a large number of properties, for example. Regardless of this,
one of the suggested future directions is to experiment with other partitioning
strategies. Another aspect to evaluate in the future is the possibility of addi-
tionally representing the inverse triples, given how the graph is expanded and
that the paths are considered as undirected.

For data partitioning, we used the horizontal-based partitioning tech-
nique, which evenly partitions the data horizontally over the number of ma-
chines in the cluster. For our proof-of-concept, we partitioned the two state-

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 6. Evaluation 72

ment tables representing the data in the two datasets according to the number
of CPU cores on the machine. Both datasets were partitioned into 200 Par-
quet files each, each file representing a partition. The files corresponding to
DBpedia21M have an average size of 3.5 MB, while the files corresponding
to DBpedia45M have an average size of 7.5 MB. As future work, we plan to
test the framework on a real distributed environment, with multiple machines
in a cluster, and to conduct experiments to evaluate the performance using
different partitioning techniques and a different number of partitions.

6.2.1.5
Path Search Strategies

Using DCoEPinKB, we proceeded to evaluate a family of six path
search strategies obtained by combining two entity similarity measures
(Jaccard index andWLM) and three path ranking measures (PF-ITF, EBR,
and PMI), which correspond to the first six strategies presented in Table 4.1.
Table 6.4 shows the path search strategies evaluated using DCoEPinKB.

Table 6.4: Path Search Strategies evaluated using DCoEPinKB

Acronym Name
1 J&I Jaccard index & PF-ITF
2 J&E Jaccard index & EBR
3 J&P Jaccard index & PMI
4 W&I WLM & PF-ITF
5 W&E WLM & EBR
6 W&P WLM & PMI

6.2.1.6
Expansion limits

We evaluate the six path search strategies in Table 6.4 for different
expansion limits during the pathfinding process. So, for the experiments, we
successively set the expansion limit to λ = 5, 10, 15, 20, 25, that is, to the top
5,. . . , 25 adjacent nodes, ranked by the entity similarity measure, and also to
the top 50% of the adjacent nodes, ranked by the entity similarity measure.

6.2.1.7
Configuration parameters

The rest of the configuration parameters (i.e., the maximum path length
between the entities, the maximum entity degree, the set of ignored properties,
the entity prefix, and the maximum number of paths) were set as in the
experiments with CoEPinKB (Section 6.1.1.5).

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 6. Evaluation 73

6.2.1.8
Ground Truth

We needed a ground truth to evaluate the ranking accuracy of the path
search strategies for different expansion limit values using nDCGk, for k = 1
to 50. We did not adopt the ranked lists of paths in Herrera et al. (2017)
as our ground truth because the subsets of DBpedia we used were different
from those in Herrera et al. (2017) –DBpedia indeed constantly changes. This
section describes how we constructed the ground truth.

Let πi, for i = 1...6, be one of the six path search strategies listed in
Table 6.4. For each entity pair in each DBpedia dataset (i.e., DBpedia21M
and DBpedia45M), we created a separate ground truth path ranking for πi
by:

1. Executing πi with different expansion limits (λ = 5, 10, 15, 20, 25, 50%).
It resulted in six sets of paths P λj

πi , one for each expansion limit λj.

2. Combining all sets of paths obtained in one set of paths Pπi
=

6⋃
j=1

P
λj
πi .

3. Ranking the paths in Pπi
using the path ranking measure adopted in πi,

and retaining the top-50 ranked paths.

This resulted in a dataset5 that contains a total of 240 ranked lists,
with 50 relationship paths each, between entity pairs in the music and movies
domains. For each pair of entities there are 12 ranked lists, 6 for each of the
2 DBpedia datasets (i.e., DBpedia21M and DBpedia45M) and each one
specific to one of the 6 path search strategies (i.e., J&I, J&E, J&P, W&I, W&E,
W&P). This dataset supports the evaluation of approaches that address the
entity relatedness problem and specifically permits evaluating the impact of
the expansion limit, for a given entity similarity measure and a path ranking
measure.

6.2.1.9
Ranking Accuracy

We adopted the Normalized Discounted Cumulative Gain (nDCG) to
measure the accuracy of the rankings obtained. This measure was previously
introduced in Section 2.4.

5The dataset containing the ground truth files is available at https://figshare.com/
articles/dataset/Ground_Truth_for_Entity_Relatedness_Problem_over_DBpedia_
datasets/15181086.

https://figshare.com/articles/dataset/Ground_Truth_for_Entity_Relatedness_Problem_over_DBpedia_datasets/15181086
https://figshare.com/articles/dataset/Ground_Truth_for_Entity_Relatedness_Problem_over_DBpedia_datasets/15181086
https://figshare.com/articles/dataset/Ground_Truth_for_Entity_Relatedness_Problem_over_DBpedia_datasets/15181086
DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 6. Evaluation 74

6.2.2
Experiment 2 – Performance Evaluation

Using DCoEPinKB, the first set of experiments evaluated the perfor-
mance, in terms of average execution time, of different path search strategies
for increasing values of the expansion limit. First, we analyze the results using
the J&E strategy, as this strategy achieved the best performance for finding
relevant relationship paths in Herrera (2017) and the best average execution
times as demonstrated in Experiment 1 (Section 6.1.2). Figure 6.4 shows the
average execution times for this strategy. For each pair of entities, we searched
6 times the top-50 paths between them, excluded the first run time to avoid
the warm-up bias, and calculated the average time of the last 5 executions.

5 10 15 20 25 50%
0

20

40
·103

Expansion limit

Av
er
ag
e
tim

e
(m

s) Movies in DBpedia21M
Movies in DBpedia45M
Music in DBpedia21M
Music in DBpedia45M

Figure 6.4: Average execution time over all entity pairs in each domain and
dataset for the J&E strategy varying the expansion limit

Clearly, the execution time increases with higher expansion limits. For
the entity pairs from the movies domain, DCoEPinKB kept the time for
finding relevant paths, on average, below 2.0 secs, when the expansion limit
was set to 25, or below. When the expansion limit was the top 50% of most
similar adjacent nodes, the algorithm took, on average, around 3.3 secs for
DBpedia21M and 4.6 secs for DBpedia45M. For the entity pairs from the
music domain, the time for finding relevant paths remained, on average, below
2.0 secs for DBpedia21M and 5.0 secs for DBpedia45M when the expansion
limit was set to 25, or below. When the expansion limit was the top 50%
of most similar adjacent nodes, the algorithm took, on average, around 11.0
secs for DBpedia21M and 38.4 secs for DBpedia45M, which means quite
a noticeable increase. The average execution times of the other five strategies
behaved similarly to the average execution times of the J&E strategy when
increasing the expansion limits, as shown in Figure A.1 in Appendix A.

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 6. Evaluation 75

As the execution time is highly dependent on the number of paths found,
we also show in Figure 6.5 the average number of paths found for different
expansion limits using the J&E strategy. The number of paths found is closely
related to the degree of the entities involved. Hence, by expanding the 50%
most similar adjacent nodes, in the case of entities with a high degree, the
framework will carry out a broader exploration of the graph and increase the
probability of finding many more paths to be ranked, which implies that the
running time also increases.

5 10 15 20 25 50%
0

2,000

4,000

6,000

Expansion limit

Av
er
ag
e
pa

th
s
fo
un

d Movies in DBpedia21M
Movies in DBpedia45M
Music in DBpedia21M
Music in DBpedia45M

Figure 6.5: Number of paths found over all entity pairs in each domain and
dataset for the J&E strategy varying the expansion limit

6.2.3
Experiment 3 – Ranking Accuracy

The second set of experiments with DCoEPinKB evaluated the ranking
accuracy of the path search strategies, for different expansion limit values, as
compared to the proposed ground truth, using nDCGk, for k = 1 to 50. In
what follows, let “S with top-n” indicates the strategy S expanding the top n
most similar adjacent nodes, where n may also be a percentage.

Figure 6.6 shows the average nDCGk for the J&E strategy for the movies
and music domains in DBpedia21M and DBpedia45M. For the movies
domain, J&E with top-50% obtained a good performance in both datasets: the
average nDCGk was above 0.80 using DBpedia21M (Figure 6.6a), and above
0.86 using DBpedia45M (Figure 6.6b), without a significant loss for higher
values of k. J&E with top-50% also had a good performance for the music
domain. In this case, the average nDCGk was above 0.73 using DBpedia21M
(Figure 6.6c), and above 0.84 using DBpedia45M (Figure 6.6d). Finally,
note that, although J&E with top-50% had a high average execution time
over DBpedia45M (Figure 6.4), the difference between the average nDCGk

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 6. Evaluation 76

for J&E with top-50% and J&E with top-25 does not justify saving time in
detriment of finding the most relevant paths. The smallest difference in the
ranking accuracy between both expansion strategies occurs between positions
2 and 8 of the ranking, where the top-50% strategy reaches an average nDCGk

equal to 0.79, while the top-25 strategy reaches a low 0.44.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

Av
er
ag
e
nD

C
G
@
k

(a) Movies domain in DBpedia21M

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

Av
er
ag
e
nD

C
G
@
k 50%

25
20
15
10
5

(b) Movies domain in DBpedia45M

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

Av
er
ag
e
nD

C
G
@
k

(c) Music domain in DBpedia21M

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

Av
er
ag
e
nD

C
G
@
k 50%

25
20
15
10
5

(d) Music domain in DBpedia45M

Figure 6.6: Average nDCG@k over the movies and music domains for the J&E
strategy varying the expansion limit

Figure 6.7 shows the average nDCGk for the J&I strategy for the
movies and music domains in DBpedia21M and DBpedia45M. We argue
that, by using the PF-ITF measure for ranking the relationship paths, it is
possible to achieve acceptable performance in the movies domain using J&I
with the top-25. Indeed, the average nDCGk for J&I with top-25 was above
0.67 using DBpedia21M (Figure 6.7a), and above 0.73 using DBpedia45M
(Figure 6.7b). Figure 6.7a shows that the average nDCGk for J&I with top-25
decreases for higher values of k. But, for k ≤ 20, it had an average nDCGk of
0.72, which is better than the average nDCGk of 0.52 for J&I with top-50%.
Figure 6.7b also shows that the average nDCGk for J&I with top-25 is better
than the average nDCGk for J&I with top-50%. For the music domain and
DBpedia21M, and for 3 ≤ k ≤ 15, J&I with top-25 and J&I with top-50%
both had an average nDCGk close to 0.62 (Figure 6.7c), which justifies using,

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 6. Evaluation 77

in this case, a slightly less expensive expansion strategy. Figure A.1a shows the
average execution times of the J&I strategy. Given the high average execution
time of J&I with top-50%, it is worth opting for J&I with top-25, especially if
one wants the first few most relevant paths.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

Av
er
ag
e
nD

C
G
@
k

(a) Movies domain in DBpedia21M

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k
Av

er
ag
e
nD

C
G
@
k 50%

25
20
15
10
5

(b) Movies domain in DBpedia45M

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

Av
er
ag
e
nD

C
G
@
k

(c) Music domain in DBpedia21M

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

Av
er
ag
e
nD

C
G
@
k 50%

25
20
15
10
5

(d) Music domain in DBpedia45M

Figure 6.7: Average nDCG@k over the movies and music domains for the J&I
strategy varying the expansion limit

Similar to the J&I with the top-25, in the movies domain, W&I with
the top-25 achieves a very good performance that outperforms the rest of
the expansion strategies. Indeed, the average nDCGk for W&I with top-25
was above 0.78 using DBpedia21M (Figure A.3a), and above 0.77 using
DBpedia45M (Figure A.3a). Another interesting result is that by using the
PMI measure to rank the relationship paths, it is possible to achieve acceptable
performance in the movies domain in DBpedia21M using J&P or W&P with
the top-25. Indeed, using DBpedia21M, the average nDCGk for J&P with
top-25 was above 0.67 (Figure A.2a), and above 0.69 for W&P with top-25
(Figure A.5a).

To summarize, in most cases, the top-50% most similar adjacent nodes
strategy had the highest average execution times and achieved the best
accuracy rankings. However, in some cases, it is feasible to use a strategy

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 6. Evaluation 78

Movies Music
0

5,000

10,000

280
1,850

82.8
1,823

714.5

10,998.7
Av

er
ag
e
pa

th
s
fo
un

d
CoEPinKB
DCoEPinKB/DBpedia21M
DCoEPinKB/DBpedia45M

Figure 6.8: Average paths found for each domain using CoEPinKB and
DCoEPinKB

such as the top-25 most similar adjacent nodes, which is faster and achieves
acceptable results.

6.3
Comparison of CoEPinKB and DCoEPinKB

In this section, we compare the performance of the CoEPinKB and
DCoEPinKB frameworks. Although the experiments with both frameworks
were performed on different DBpedia datasets, it is possible to draw some
conclusions from the results of these experiments.

Figure 6.8 shows the average paths found for the movies and music do-
mains using CoEPinKB and DCoEPinKB using the DBpedia21M and
DBpedia45M datasets. DCoEPinKB was tested with different expansion
limits. However, for the comparison to make sense, we calculated the average
number of paths found using the expansion limit equal to 50%. Similarly, for
this calculation, we only considered those 10 entity pairs that were also used in
the experiments with CoEPinKB. The experiments revealed that the number
of paths found using CoEPinKB, as well as DCoEPinKB with the DBpe-
dia21M dataset, are quite similar. However, in the DBpedia45M dataset,
the number of paths found using DCoEPinKB is much higher, especially in
the music domain, where the number of paths found is almost 6 times higher
than the number of paths found using CoEPinKB or DCoEPinKB in the
DBpedia21M dataset.

This significant difference between the number of paths found affects the
execution times of each of the strategies. Figure 6.9 shows the average execution
times of the six path search strategies using CoEPinKB and DCoEPinKB
in the movies and music domains.

As expected, the average execution times of DCoEPinKB were the

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 6. Evaluation 79

J&I J&E J&P W&I W&E W&P
0

1

2

3

4
·103

Av
er
ag
e
tim

e
(m

s)
CoEPinKB
DCoEPinKB in DBpedia21M
DCoEPinKB in DBpedia45M

(a) Movies domain
J&I J&E J&P W&I W&E W&P

0

20

40

·103

Av
er
ag
e
tim

e
(m

s)

CoEPinKB
DCoEPinKB in DBpedia21M
DCoEPinKB in DBpedia45M

(b) Music domain

Figure 6.9: Average time of path search strategies using CoEPinKB and
DCoEPinKB in the movies and music domains

highest in both domains in DBpedia45M. Furthermore, the average exe-
cution times of DCoEPinKB in DBpedia21M were higher than those of
CoEPinKB in 10 of the 12 combinations of path search strategies and do-
mains. DCoEPinKB only beats CoEPinKB using the W&I and W&P
strategies in the music domain, over DBpedia21M. But one has to remember
that our proof-of-concept implementation of DCoEPinKB was tested on a
single-machine configuration and, therefore, had to allocate its resources both
for data processing as well as for data storage in the HDD and main mem-
ory. This limitation partly justifies the results reported in Figure 6.9, but calls
for further experiments to assess the performance of DCoEPinKB in a truly
distributed experiment.

6.4
Chapter Conclusions

In this chapter, we presented a set of experiments to evaluate a family of
path search strategies using the CoEPinKB and DCoEPinKB frameworks
over real-world datasets extracted from DBpedia. We evaluated the perfor-
mance, in terms of average execution time, of the two frameworks, and the
ranking accuracy of the path search strategies for different expansion limit
values in DCoEPinKB. We also described how we created a ground truth to
experiment with DCoEPinKB.

Our performance evaluation of the path search strategies using
CoEPinKB indicated that any strategy that uses SimRank as the ac-
tivation function has a poor performance when compared with the other
strategies. We also verified that J&E, which is the most effective strategy,

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 6. Evaluation 80

is also the fastest one. The experiments with DCoEPinKB showed that
reducing the expansion limit, when finding the paths between entities with
a high degree, can improve the execution time, as expected, but without a
significant loss in the accuracy of the ranking when only the first few (i.e., 10
or less) top paths are requested.

In a broader sense, this evaluation contributed to understanding the
interplay between entity similarity and path ranking measures. Indeed, the
literature provides an extensive list of such measures, which are often addressed
separately or, at best, a specific pair is investigated. However, in the context
of the entity relatedness problem, they have a combined effect to select the
paths that best explain the relationships between two entities.

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

7
Conclusions and Future Work

7.1
Conclusions

The entity relatedness problem refers to the question of exploring a
knowledge base, represented as an RDF graph, to discover and understand
how two entities are connected. Strategies designed to address this problem
typically adopt an entity similarity measure to reduce the path search space
and a path ranking measure to order and filter the list of relevant paths
returned.

The main contribution of this thesis, presented in Chapters 4 and 5, is
the proposal and implementation of approaches that help address the entity
relatedness problem. We introduced two frameworks, called CoEPinKB and
DCoEPinKB, to empirically evaluate path search strategies that combine
entity similarity and path ranking measures. Both frameworks have some hot
spots for developers to easily add new entity similarity and relationship path
ranking measures to generate new path search strategies, as well as to work
with different knowledge bases.

The second contribution, presented in Section 6.2.1.8, is the proposal of
a ground truth that supports the evaluation of approaches that address the
entity relatedness problem and specifically permits evaluating the impact of
the expansion limit, for a given entity similarity measure and a path ranking
measure. This dataset contains a total of 240 ranked lists, with 50 relationship
paths each, between entity pairs in the music and movies domains.

Finally, another important contribution, presented in Chapter 6, is an
extensive experimental evaluation on the music and movies domains over real-
data, collected from DBpedia, to assess the correctness and the performance of
a family of path search strategies using the CoEPinKB and DCoEPinKB
frameworks. The performance evaluation indicated that strategies that use
SimRank as activation function have a poor performance when compared
with the other strategies. We also verified that J&E, which is the most effective
strategy, is also the fastest one. The experiments with DCoEPinKB showed
that reducing the expansion limit, when finding the paths between entities
with a high degree, can improve the execution time, as expected, but without
a significant loss in the accuracy of the ranking when only the first few (i.e.,
10 or less) top paths are requested.

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 7. Conclusions and Future Work 82

The work on the CoEPinKB framework was published in Jiménez, Leme
& Casanova (2021). The work on the DCoEPinKB framework was presented
at the Brazilian Symposium on Databases (SBBD 2021) (JIMéNEZ et al.,
2021) and will be published soon.

7.2
Future Work

As future work, we plan to deploy the DCoEPinKB framework in
a fully distributed environment and repeat the experiments in this new
configuration setting. We also want to improve DCoEPinKB to run in
interactive mode with a graphical user interface that facilitates the use by
the end-users. A significant improvement could be in the visualization of the
relevant relationship paths, not as a sequence of identifiers of entities and
properties, but as a graph that the user can visually explore.

Additionally, we plan to evaluate the performance of DCoEPinKB
using different relational schemas for RDF other than the Statement Table
schema, such as the Property Table and Vertical Partitioning schemas, various
RDF-based partitioning techniques (i.e., subject-based, predicate-based, and
horizontal-based partitioning), and data formats other than Parquet. We also
plan to evaluate the complexity of the algorithms using different configurations.

We plan to implement additional entity similarity metrics (including Sim-
Rank in the distributed framework) and relationship path ranking measures
and test the path search strategies over other domains and knowledge bases.
We also intend to evaluate the benefits of incorporating the InfoRank mea-
sure (MENENDEZ, 2019) into the framework. Using InfoRank, we can assign
an importance value to each resource and, in this way, we will be able to se-
lect the most important similar entities during the expansion process of the
backward search algorithm to find the most relevant paths. This will make it
possible to have new search strategies since, for each similarity measure, it will
now be possible to take into account the importance of the neighbor of a node
to decide whether that neighbor should be expanded or not.

The proposed frameworks work with RDF datasets, but, in the future,
a solution that allows exploring the connectivity of entities in relational
databases could be implemented. In that case, the relational data could be
transformed in the following way: the tuples within a table would be considered
as the entities, identified by the primary key, and the foreign keys would
represent the properties or relationships with other entities.

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

8
Bibliography

ABADI, D. J. et al. SW-Store: a vertically partitioned DBMS for Seman-
tic Web data management. The VLDB Journal, v. 18, n. 2, p. 385–406,
abr. 2009. ISSN 0949-877X. Available from Internet: <https://doi.org/10.1007/
s00778-008-0125-y>. Cited in page 24.

ABDELAZIZ, I. et al. A survey and experimental comparison of distributed
SPARQL engines for very large RDF data. Proceedings of the VLDB Endow-
ment, v. 10, n. 13, p. 2049–2060, set. 2017. ISSN 2150-8097. Available from
Internet: <https://dl.acm.org/doi/10.14778/3151106.3151109>. Cited 5 times
in pages 18, 23, 24, 36, and 37.

BERNERS-LEE, T. Linked Data - Design Issues. 2006. Available from Internet:
<https://www.w3.org/DesignIssues/LinkedData.html>. Cited in page 22.

BHALOTIA, G. et al. Keyword searching and browsing in databases using BANKS.
In: Proceedings 18th International Conference on Data Engineering. [S.l.:
s.n.], 2002. p. 431–440. ISSN: 1063-6382. Cited in page 32.

CHENG, G.; LIU, D.; QU, Y. Fast Algorithms for Semantic Association Search and
Pattern Mining. IEEE Transactions on Knowledge and Data Engineering,
v. 33, n. 4, p. 1490–1502, abr. 2021. ISSN 1558-2191. Conference Name: IEEE
Transactions on Knowledge and Data Engineering. Cited in page 33.

CHENG, G.; SHAO, F.; QU, Y. An Empirical Evaluation of Techniques for
Ranking Semantic Associations. IEEE Transactions on Knowledge and Data
Engineering, v. 29, n. 11, p. 2388–2401, nov. 2017. ISSN 1558-2191. Conference
Name: IEEE Transactions on Knowledge and Data Engineering. Cited in page 33.

CHENG, G.; ZHANG, Y.; QU, Y. Explass: Exploring Associations between Entities
via Top-K Ontological Patterns and Facets. In: MIKA, P. et al. (Ed.). The
Semantic Web – ISWC 2014. Cham: Springer International Publishing, 2014.
v. 8797, p. 422–437. ISBN 978-3-319-11914-4 978-3-319-11915-1. Series Title:
Lecture Notes in Computer Science. Available from Internet: <http://link.springer.
com/10.1007/978-3-319-11915-1_27>. Cited 8 times in pages 17, 18, 32, 33,
34, 41, 65, and 66.

CHURCH, K. W.; HANKS, P. Word Association Norms, Mutual Information, and
Lexicography. Computational Linguistics, v. 16, n. 1, p. 22–29, 1990. Available
from Internet: <https://www.aclweb.org/anthology/J90-1003>. Cited 2 times
in pages 28 and 29.

COHEN, W. W. Graph walks and graphical models. [S.l.]: Citeseer, 2010. v. 5.
Cited in page 65.

CYGANIAK, R.; WOOD, D.; LANTHALER, M. RDF 1.1 Concepts and Ab-
stract Syntax. 2014. W3C Recommendation 25 February 2014. Available from
Internet: <https://www.w3.org/TR/rdf11-concepts/>. Cited in page 21.

https://doi.org/10.1007/s00778-008-0125-y
https://doi.org/10.1007/s00778-008-0125-y
https://dl.acm.org/doi/10.14778/3151106.3151109
https://www.w3.org/DesignIssues/LinkedData.html
http://link.springer.com/10.1007/978-3-319-11915-1_27
http://link.springer.com/10.1007/978-3-319-11915-1_27
https://www.aclweb.org/anthology/J90-1003
https://www.w3.org/TR/rdf11-concepts/
DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 8. Bibliography 84

DEAN, J.; GHEMAWAT, S. MapReduce: simplified data processing on large
clusters. Communications of the ACM, v. 51, n. 1, p. 107–113, jan. 2008.
ISSN 0001-0782, 1557-7317. Available from Internet: <https://dl.acm.org/doi/
10.1145/1327452.1327492>. Cited in page 36.

FANG, L. et al. REX: explaining relationships between entity pairs. Proceedings
of the VLDB Endowment, v. 5, n. 3, p. 241–252, nov. 2011. ISSN 2150-8097.
Available from Internet: <http://dl.acm.org/doi/10.14778/2078331.2078339>.
Cited 8 times in pages 17, 18, 32, 34, 40, 41, 65, and 66.

FAYE, D. C.; CURé, O.; BLIN, G. A survey of RDF storage approaches. Revue
Africaine de la Recherche en Informatique et Mathématiques Appliquées,
Volume 15, p. 11–35, set. 2012. ISSN 1638-5713. Available from Internet: <https:
//arima.episciences.org/1956>. Cited 2 times in pages 23 and 24.

HAMEDANI, M. R.; KIM, S.-W. On Investigating Both Effectiveness and Effi-
ciency of Embedding Methods in Task of Similarity Computation of Nodes in
Graphs. Applied Sciences, v. 11, n. 1, p. 162, jan. 2021. Number: 1 Publisher:
Multidisciplinary Digital Publishing Institute. Available from Internet: <https:
//www.mdpi.com/2076-3417/11/1/162>. Cited 2 times in pages 27 and 67.

HAYES, P. J.; PATEL-SCHNEIDER, P. F. RDF 1.1 Semantics. 2014. Avail-
able from Internet: <https://www.w3.org/TR/2014/REC-rdf11-mt-20140225/>.
Cited in page 21.

HEIM, P. et al. RelFinder: Revealing Relationships in RDF Knowledge Bases. In:
HUTCHISON, D. et al. (Ed.). Semantic Multimedia. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009. v. 5887, p. 182–187. ISBN 978-3-642-10542-5 978-3-642-
10543-2. Series Title: Lecture Notes in Computer Science. Available from Internet:
<http://link.springer.com/10.1007/978-3-642-10543-2_21>. Cited 2 times in
pages 17 and 32.

HERRERA, J. E. T.On the Connectivity of Entity Pairs in Knowledge Bases.
Tese (Doctoral Dissertation) — Pontifícia Universidade Católica do Rio de Janeiro,
Rio de Janeiro, Brazil, maio 2017. Available from Internet: <http://www.maxwell.
vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=30742@2>. Cited
15 times in pages 17, 19, 32, 35, 39, 43, 44, 45, 46, 63, 65, 66, 67, 69, and 74.

HERRERA, J. E. T. et al. DBpedia Profiler Tool: Profiling the Connectivity of
Entity Pairs in DBpedia. In: Proceedings of the 5th International Workshop
on Intelligent Exploration of Semantic Data (IESD 2016). [S.l.: s.n.], 2016.
Cited 6 times in pages 17, 18, 32, 34, 41, and 65.

HERRERA, J. E. T. et al. An Entity Relatedness Test Dataset. In: D’AMATO, C.
et al. (Ed.). The Semantic Web – ISWC 2017. Cham: Springer International
Publishing, 2017. v. 10588, p. 193–201. ISBN 978-3-319-68203-7 978-3-319-
68204-4. Series Title: Lecture Notes in Computer Science. Available from Internet:
<http://link.springer.com/10.1007/978-3-319-68204-4_20>. Cited 8 times in
pages 18, 34, 35, 63, 64, 66, 70, and 73.

HUANG, J.; ABADI, D. J.; REN, K. Scalable SPARQL querying of large RDF
graphs. Proceedings of the VLDB Endowment, v. 4, n. 11, p. 1123–1134,

https://dl.acm.org/doi/10.1145/1327452.1327492
https://dl.acm.org/doi/10.1145/1327452.1327492
http://dl.acm.org/doi/10.14778/2078331.2078339
https://arima.episciences.org/1956
https://arima.episciences.org/1956
https://www.mdpi.com/2076-3417/11/1/162
https://www.mdpi.com/2076-3417/11/1/162
https://www.w3.org/TR/2014/REC-rdf11-mt-20140225/
http://link.springer.com/10.1007/978-3-642-10543-2_21
http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=30742@2
http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=30742@2
http://link.springer.com/10.1007/978-3-319-68204-4_20
DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 8. Bibliography 85

ago. 2011. ISSN 2150-8097. Available from Internet: <https://dl.acm.org/doi/
10.14778/3402707.3402747>. Cited 2 times in pages 18 and 36.

HULPUş, I.; PRANGNAWARAT, N.; HAYES, C. Path-Based Semantic Relatedness
on Linked Data and Its Use to Word and Entity Disambiguation. In: ARENAS, M.
et al. (Ed.). The Semantic Web - ISWC 2015. Cham: Springer International
Publishing, 2015. v. 9366, p. 442–457. ISBN 978-3-319-25006-9 978-3-319-25007-
6. Series Title: Lecture Notes in Computer Science. Available from Internet:
<http://link.springer.com/10.1007/978-3-319-25007-6_26>. Cited 3 times in
pages 28, 29, and 66.

HUSAIN, M. et al. Heuristics-Based Query Processing for Large RDF Graphs Using
Cloud Computing. IEEE Transactions on Knowledge and Data Engineering,
v. 23, n. 9, p. 1312–1327, set. 2011. ISSN 1041-4347. Available from Internet:
<http://ieeexplore.ieee.org/document/5765957/>. Cited 2 times in pages 18
and 36.

HUSAIN, M. F. et al. Storage and Retrieval of Large RDF Graph Using Hadoop
and MapReduce. In: HUTCHISON, D. et al. (Ed.). Cloud Computing. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009. v. 5931, p. 680–686. ISBN 978-3-
642-10664-4 978-3-642-10665-1. Series Title: Lecture Notes in Computer Science.
Available from Internet: <http://link.springer.com/10.1007/978-3-642-10665-1_
72>. Cited in page 36.

JACCARD, P. Étude comparative de la distribution florale dans une portion des
Alpes et des Jura. Bull Soc Vaudoise Sci Nat, v. 37, p. 547–579, 1901. Cited
2 times in pages 25 and 26.

JEH, G.; WIDOM, J. SimRank: a measure of structural-context similarity. In:
Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2002. p. 538–543. Available
from Internet: <http://dl.acm.org/citation.cfm?id=775126>. Cited 2 times in
pages 25 and 27.

JIMéNEZ, J. G.; LEME, L. A. P. P.; CASANOVA, M. A. CoEPinKB: A Frame-
work to Understand the Connectivity of Entity Pairs in Knowledge Bases. In:
Proceedings of the Integrated Software and Hardware Seminar (SEM-
ISH). SBC, 2021. p. 97–105. ISSN: 2595-6205. Available from Internet: <https:
//sol.sbc.org.br/index.php/semish/article/view/15811>. Cited 3 times in pages
19, 38, and 82.

JIMéNEZ, J. G. et al. A distributed framework to investigate the entity relatedness
problem in large RDF knowledge bases. Forthcoming. 2021. Cited 3 times in pages
19, 38, and 82.

JäRVELIN, K.; KEKäLäINEN, J. Cumulated gain-based evaluation of IR tech-
niques. ACM Transactions on Information Systems (TOIS), v. 20, n. 4,
p. 422–446, out. 2002. ISSN 1046-8188, 1558-2868. Available from Internet:
<http://dl.acm.org/doi/10.1145/582415.582418>. Cited in page 30.

KACHOLIA, V. et al. Bidirectional expansion for keyword search on graph
databases. In: Proceedings of the 31st international conference on Very

https://dl.acm.org/doi/10.14778/3402707.3402747
https://dl.acm.org/doi/10.14778/3402707.3402747
http://link.springer.com/10.1007/978-3-319-25007-6_26
http://ieeexplore.ieee.org/document/5765957/
http://link.springer.com/10.1007/978-3-642-10665-1_72
http://link.springer.com/10.1007/978-3-642-10665-1_72
http://dl.acm.org/citation.cfm?id=775126
https://sol.sbc.org.br/index.php/semish/article/view/15811
https://sol.sbc.org.br/index.php/semish/article/view/15811
http://dl.acm.org/doi/10.1145/582415.582418
DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 8. Bibliography 86

large data bases. Trondheim, Norway: VLDB Endowment, 2005. (VLDB ’05), p.
505–516. ISBN 978-1-59593-154-2. Cited in page 33.

KIM, T. et al. Similarity query support in big data management systems. Informa-
tion Systems, v. 88, p. 101455, fev. 2020. ISSN 03064379. Available from Inter-
net: <https://linkinghub.elsevier.com/retrieve/pii/S0306437919305071>. Cited
in page 36.

LE, W. et al. Scalable keyword search on large RDF data. Knowledge and
Data Engineering, IEEE Transactions on, v. 26, n. 11, p. 2774–2788, 2014.
Available from Internet: <http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=
6720109>. Cited 3 times in pages 18, 35, and 40.

LEHMANN, J. et al. DBpedia – A large-scale, multilingual knowledge base
extracted from Wikipedia. Semantic Web, v. 6, n. 2, p. 167–195, 2015.
ISSN 15700844. Available from Internet: <https://www.medra.org/servlet/
aliasResolver?alias=iospress&doi=10.3233/SW-140134>. Cited 2 times in pages
17 and 64.

LEHMANN, J.; SCHüPPEL, J.; AUER, S. Discovering Unknown Connections – the
DBpedia Relationship Finder. In: The Social Semantic Web 2007–Proceed-
ings of the 1st Conference on Social Semantic Web (CSSW). Gesellschaft
für Informatik e. V., 2007. p. 99–109. ISBN 978-3-88579-207-9. Accepted: 2019-
05-15T08:44:12Z ISSN: 1617-5468. Available from Internet: <http://dl.gi.de/
handle/20.500.12116/22392>. Cited in page 32.

LESKOVEC, J.; RAJARAMAN, A.; ULLMAN, J. D. Mining of Massive
Datasets. [S.l.]: Cambridge University Press, 2014. Cited in page 26.

LI, C. et al. Fast computation of SimRank for static and dynamic information
networks. In: Proceedings of the 13th International Conference on Ex-
tending Database Technology - EDBT ’10. Lausanne, Switzerland: ACM
Press, 2010. p. 465–476. ISBN 978-1-60558-945-9. Available from Internet: <http:
//portal.acm.org/citation.cfm?doid=1739041.1739098>. Cited 2 times in pages
27 and 67.

LI, M. et al. CrashSim: An Efficient Algorithm for Computing SimRank over
Static and Temporal Graphs. In: Proceedings of the IEEE 36th International
Conference on Data Engineering (ICDE). [S.l.]: IEEE, 2020. p. 1141–1152.
Cited 2 times in pages 27 and 67.

LIZORKIN, D.; VELIKHOV, P. Accuracy Estimate and Optimization Techniques
for SimRank Computation. Proceedings of the VLDB Endowment, v. 1, n. 1,
p. 422–433, ago. 2008. Cited 2 times in pages 27 and 67.

MAHRIA, B. B.; CHAKER, I.; ZAHI, A. An empirical study on the evaluation
of the RDF storage systems. Journal of Big Data, v. 8, n. 100, p. 1–20,
jul. 2021. ISSN 2196-1115. Available from Internet: <https://doi.org/10.1186/
s40537-021-00486-y>. Cited in page 23.

MARKIEWICZ, M. E.; LUCENA, C. J. P. Object oriented framework development.
Crossroads, p. 10–1145, 2001. Cited in page 51.

https://linkinghub.elsevier.com/retrieve/pii/S0306437919305071
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6720109
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6720109
https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/SW-140134
https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/SW-140134
http://dl.gi.de/handle/20.500.12116/22392
http://dl.gi.de/handle/20.500.12116/22392
http://portal.acm.org/citation.cfm?doid=1739041.1739098
http://portal.acm.org/citation.cfm?doid=1739041.1739098
https://doi.org/10.1186/s40537-021-00486-y
https://doi.org/10.1186/s40537-021-00486-y
DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 8. Bibliography 87

MENENDEZ, E. S. Novel Node Importance Measures to Improve Keyword
Search over RDF Graphs. Tese (Doctoral Dissertation) — Pontifícia Univer-
sidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil, 2019. Cited in page
82.

MEYMANDPOUR, R.; DAVIS, J. G. A semantic similarity measure for linked data:
An information content-based approach. Knowledge-Based Systems, v. 109, p.
276–293, out. 2016. Publisher: Elsevier. Cited in page 25.

MILNE, D.; WITTEN, I. H. An Effective, Low-Cost Measure of Semantic Re-
latedness Obtained from Wikipedia Links. In: Proceedings of the AAAI 2008
Workshop on Wikipedia and Artificial Intelligence. Chicago: AAAI Press,
2008. p. 25–30. Cited 2 times in pages 25 and 26.

MOORE, J. L.; STEINKE, F.; TRESP, V. A Novel Metric for Information Retrieval
in Semantic Networks. In: GARCíA-CASTRO, R.; FENSEL, D.; ANTONIOU,
G. (Ed.). The Semantic Web: ESWC 2011 Workshops. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012. v. 7117, p. 65–79. ISBN 978-3-642-25952-4 978-
3-642-25953-1. Series Title: Lecture Notes in Computer Science. Available from
Internet: <http://link.springer.com/10.1007/978-3-642-25953-1_6>. Cited 4
times in pages 32, 33, 40, and 65.

PIRRò, G. Explaining and Suggesting Relatedness in Knowledge Graphs. In:
ARENAS, M. et al. (Ed.). The Semantic Web - ISWC 2015. Cham: Springer
International Publishing, 2015. v. 9366, p. 622–639. ISBN 978-3-319-25006-9 978-
3-319-25007-6. Series Title: Lecture Notes in Computer Science. Available from
Internet: <http://link.springer.com/10.1007/978-3-319-25007-6_36>. Cited 10
times in pages 17, 18, 28, 32, 33, 34, 41, 63, 65, and 66.

PRUD’HOMMEAUX, E.; SEABORNE, A. SPARQL Query Language for RDF.
2008. Available from Internet: <https://www.w3.org/TR/rdf-sparql-query>.
Cited in page 22.

PRZYJACIEL-ZABLOCKI, M. et al. RDFPath: Path Query Processing on Large
RDF Graphs with MapReduce. In: GARCíA-CASTRO, R.; FENSEL, D.; ANTO-
NIOU, G. (Ed.). The Semantic Web: ESWC 2011 Workshops. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2012. v. 7117, p. 50–64. ISBN 978-3-642-25952-
4 978-3-642-25953-1. Series Title: Lecture Notes in Computer Science. Avail-
able from Internet: <http://link.springer.com/10.1007/978-3-642-25953-1_5>.
Cited 3 times in pages 18, 36, and 37.

RAGAB, M. et al. An In-depth Investigation of Large-scale RDF Relational Schema
Optimizations Using Spark-SQL. In: Proceedings of the 23rd International
Workshop on Design, Optimization, Languages and Analytical Processing
of Big Data (DOLAP 2021). Nicosia, Cyprus: [s.n.], 2021. p. 71–80. Cited 3
times in pages 18, 36, and 38.

RAGAB, M. et al. Towards making sense of Spark-SQL performance for processing
vast distributed RDF datasets. In: Proceedings of The International Workshop
on Semantic Big Data. Portland, Oregon: ACM, 2020. p. 1–6. ISBN 978-1-
4503-7974-8. Available from Internet: <https://dl.acm.org/doi/10.1145/3391274.
3393632>. Cited 2 times in pages 36 and 38.

http://link.springer.com/10.1007/978-3-642-25953-1_6
http://link.springer.com/10.1007/978-3-319-25007-6_36
https://www.w3.org/TR/rdf-sparql-query
http://link.springer.com/10.1007/978-3-642-25953-1_5
https://dl.acm.org/doi/10.1145/3391274.3393632
https://dl.acm.org/doi/10.1145/3391274.3393632
DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 8. Bibliography 88

RAGAB, M.; TOMMASINI, R.; SAKR, S. Benchmarking Spark-SQL under Allit-
erative RDF Relational Storage Backends. In: Proceedings of the QuWeDa
2019: 3rd Workshop on Querying and Benchmarking the Web of Data.
Auckland, New Zealand: [s.n.], 2019. p. 67–82. Cited 2 times in pages 36 and 38.

ROHLOFF, K.; SCHANTZ, R. E. High-Performance, Massively Scalable Dis-
tributed Systems using the MapReduce Software Framework: The SHARD Triple-
Store. Programming support innovations for emerging distributed applica-
tions, p. 1–5, 2010. Cited 2 times in pages 18 and 36.

SCHREIBER, G.; RAIMOND, Y. RDF 1.1 Primer. 2014. Available from Internet:
<https://www.w3.org/TR/rdf11-primer/>. Cited in page 21.

SCHäTZLE, A. et al. S2X: Graph-Parallel Querying of RDF with GraphX. In:
WANG, F. et al. (Ed.). Biomedical Data Management and Graph Online
Querying. Cham: Springer International Publishing, 2016. v. 9579, p. 155–
168. ISBN 978-3-319-41575-8 978-3-319-41576-5. Series Title: Lecture Notes in
Computer Science. Available from Internet: <http://link.springer.com/10.1007/
978-3-319-41576-5_12>. Cited 2 times in pages 36 and 37.

SCHäTZLE, A. et al. PigSPARQL: A SPARQL Query Processing Baseline for Big
Data. In: Proceedings of the ISWC 2013 Posters & Demonstrations Track.
[S.l.: s.n.], 2013. v. 1035, p. 241–244. Cited in page 37.

SCHäTZLE, A. et al. S2RDF: RDF Querying with SPARQL on Spark. Pro-
ceedings of the VLDB Endowment, v. 9, n. 10, p. 804–815, jun. 2016.
ISSN 21508097. Available from Internet: <http://dl.acm.org/citation.cfm?doid=
2977797.2977806>. Cited 3 times in pages 18, 36, and 37.

SIDIROURGOS, L. et al. Column-store support for RDF data management: not
all swans are white. Proceedings of the VLDB Endowment, v. 1, n. 2,
p. 1553–1563, ago. 2008. ISSN 2150-8097. Available from Internet: <https:
//doi.org/10.14778/1454159.1454227>. Cited in page 24.

solid IT.DB-Engines Ranking - Popularity ranking of key-value stores. 2020.
Library Catalog: db-engines.com. Available from Internet: <https://db-engines.
com/en/ranking/key-value+store>. Cited in page 52.

SUN, J. et al. Dima: a distributed in-memory similarity-based query processing
system. Proceedings of the VLDB Endowment, v. 10, n. 12, p. 1925–1928,
ago. 2017. ISSN 2150-8097. Available from Internet: <https://dl.acm.org/doi/10.
14778/3137765.3137810>. Cited in page 35.

SUN, J. et al. Balance-aware distributed string similarity-based query processing
system. Proceedings of the VLDB Endowment, v. 12, n. 9, p. 961–974,
maio 2019. ISSN 2150-8097. Available from Internet: <https://dl.acm.org/doi/
10.14778/3329772.3329774>. Cited 2 times in pages 18 and 35.

VIRGILIO, R. D.; MACCIONI, A. Distributed Keyword Search over RDF via
MapReduce. In: HUTCHISON, D. et al. (Ed.). The Semantic Web: Trends
and Challenges. Cham: Springer International Publishing, 2014. v. 8465, p. 208–
223. ISBN 978-3-319-07442-9 978-3-319-07443-6. Series Title: Lecture Notes in

https://www.w3.org/TR/rdf11-primer/
http://link.springer.com/10.1007/978-3-319-41576-5_12
http://link.springer.com/10.1007/978-3-319-41576-5_12
http://dl.acm.org/citation.cfm?doid=2977797.2977806
http://dl.acm.org/citation.cfm?doid=2977797.2977806
https://doi.org/10.14778/1454159.1454227
https://doi.org/10.14778/1454159.1454227
https://db-engines.com/en/ranking/key-value+store
https://db-engines.com/en/ranking/key-value+store
https://dl.acm.org/doi/10.14778/3137765.3137810
https://dl.acm.org/doi/10.14778/3137765.3137810
https://dl.acm.org/doi/10.14778/3329772.3329774
https://dl.acm.org/doi/10.14778/3329772.3329774
DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Chapter 8. Bibliography 89

Computer Science. Available from Internet: <http://link.springer.com/10.1007/
978-3-319-07443-6_15>. Cited 3 times in pages 18, 36, and 37.

VOCHT, L. D. et al. Effect of Heuristics on Serendipity in Path-Based Storytelling
with Linked Data. In: YAMAMOTO, S. (Ed.). Human Interface and the
Management of Information: Information, Design and Interaction. Cham:
Springer International Publishing, 2016. v. 9734, p. 238–251. ISBN 978-3-319-
40348-9 978-3-319-40349-6. Series Title: Lecture Notes in Computer Science.
Available from Internet: <http://link.springer.com/10.1007/978-3-319-40349-6_
23>. Cited in page 33.

VOCHT, L. D. et al. Discovering Meaningful Connections between Resources in
the Web of Data. In: Proceedings of the 6th Workshop on Linked Data on
the Web (LDOW). [S.l.: s.n.], 2013. Cited 5 times in pages 17, 18, 32, 33,
and 34.

ZAHARIA, M. et al. Spark: Cluster Computing with Working Sets. HotCloud,
v. 10, n. 10-10, p. 7, 2010. Cited 4 times in pages 23, 35, 36, and 59.

http://link.springer.com/10.1007/978-3-319-07443-6_15
http://link.springer.com/10.1007/978-3-319-07443-6_15
http://link.springer.com/10.1007/978-3-319-40349-6_23
http://link.springer.com/10.1007/978-3-319-40349-6_23
DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

A
Additional Results of the Experiments with DCoEPinKB

5 10 15 20 25 50%
0

20

40
·103

Expansion limit

Av
er
ag
e
tim

e
(m

s)

(a) J&I strategy

5 10 15 20 25 50%
0

20

40
·103

Expansion limit

Av
er
ag
e
tim

e
(m

s)
(b) J&P strategy

5 10 15 20 25 50%
0

20

40
·103

Expansion limit

Av
er
ag
e
tim

e
(m

s)

(c) W&I strategy

5 10 15 20 25 50%
0

20

40
·103

Expansion limit

Av
er
ag
e
tim

e
(m

s)

(d) W&E strategy

5 10 15 20 25 50%
0

20

40
·103

Expansion limit

Av
er
ag
e
tim

e
(m

s)

Movies in DBpedia21M
Movies in DBpedia45M
Music in DBpedia21M
Music in DBpedia45M

(e) W&P strategy

Figure A.1: Average execution time over all entity pairs in each domain and
dataset for different strategies varying the expansion limit

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Appendix A. Additional Results of the Experiments with DCoEPinKB 91

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

Av
er
ag
e
nD

C
G
@
k

(a) Movies domain in DBpedia21M

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

Av
er
ag
e
nD

C
G
@
k 50%

25
20
15
10
5

(b) Movies domain in DBpedia45M

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

Av
er
ag
e
nD

C
G
@
k

(c) Music domain in DBpedia21M

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

Av
er
ag
e
nD

C
G
@
k 50%

25
20
15
10
5

(d) Music domain in DBpedia45M

Figure A.2: Average nDCG@k over the movies and music domains for the J&P
strategy varying the expansion limit

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Appendix A. Additional Results of the Experiments with DCoEPinKB 92

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

Av
er
ag
e
nD

C
G
@
k

(a) Movies domain in DBpedia21M

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

Av
er
ag
e
nD

C
G
@
k 50%

25
20
15
10
5

(b) Movies domain in DBpedia45M

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

Av
er
ag
e
nD

C
G
@
k

(c) Music domain in DBpedia21M

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

Av
er
ag
e
nD

C
G
@
k 50%

25
20
15
10
5

(d) Music domain in DBpedia45M

Figure A.3: Average nDCG@k over the movies and music domains for the W&I
strategy varying the expansion limit

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Appendix A. Additional Results of the Experiments with DCoEPinKB 93

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

Av
er
ag
e
nD

C
G
@
k

(a) Movies domain in DBpedia21M

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

Av
er
ag
e
nD

C
G
@
k 50%

25
20
15
10
5

(b) Movies domain in DBpedia45M

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

Av
er
ag
e
nD

C
G
@
k

(c) Music domain in DBpedia21M

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

Av
er
ag
e
nD

C
G
@
k 50%

25
20
15
10
5

(d) Music domain in DBpedia45M

Figure A.4: Average nDCG@k over the movies and music domains for the
W&E strategy varying the expansion limit

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

Appendix A. Additional Results of the Experiments with DCoEPinKB 94

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

Av
er
ag
e
nD

C
G
@
k

(a) Movies domain in DBpedia21M

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

Av
er
ag
e
nD

C
G
@
k 50%

25
20
15
10
5

(b) Movies domain in DBpedia45M

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

Av
er
ag
e
nD

C
G
@
k

(c) Music domain in DBpedia21M

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

Av
er
ag
e
nD

C
G
@
k 50%

25
20
15
10
5

(d) Music domain in DBpedia45M

Figure A.5: Average nDCG@k over the movies and music domains for the
W&P strategy varying the expansion limit

DBD
PUC-Rio - Certificação Digital Nº 1621937/CA

	Strategies to Understand the Connectivity of Entity Pairs in Knowledge Bases
	Resumo
	Table of contents
	Introduction
	Context and Motivation
	Goal and Contributions
	Structure of the Thesis

	Background
	RDF
	Similarity Measures
	Overview
	Jaccard Index
	Wikipedia Link-based Measure
	SimRank

	Relationship Path Ranking Measures
	Overview
	Predicate Frequency Inverse Triple Frequency
	Exclusivity-based Relatedness
	Pointwise Mutual Information

	Measuring Ranking Accuracy

	Related Work
	Entity Relationship Discovery and Ranking in Knowledge Bases
	Similarity-based operations on Distributed Query Processing Systems
	Processing Large RDF Datasets in Distributed Environments

	Discovering Relevant Paths between Entity Pairs
	The Entity Relatedness Problem
	Formalization of Problem
	Overview of the Proposed Solution

	The CoEPinKB Approach to the Entity Relatedness Problem
	Finding Relationship Paths between Entities in a Knowledge Graph
	Ranking Relationship Paths in a Knowledge Graph

	The DCoEPinKB Approach to the Entity Relatedness Problem
	Chapter Conclusions

	Implementation
	Overview
	The CoEPinKB Framework
	Architecture
	User Interface

	The DCoEPinKB Framework
	Architecture
	User Interface

	Chapter Conclusions

	Evaluation
	CoEPinKB Evaluation
	Experimental Setup
	Experiment 1 – Performance Evaluation

	DCoEPinKB Evaluation
	Experimental Setup
	Experiment 2 – Performance Evaluation
	Experiment 3 – Ranking Accuracy

	Comparison of CoEPinKB and DCoEPinKB
	Chapter Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Additional Results of the Experiments with DCoEPinKB

